
2: For example, weak König’s lemma is the
problem whose instances are infinite binary
trees, and whose solutions are infinite paths

Cone avoidance 3
3.1 Context and motivation . . . 19
3.2 First examples 20
3.3 Forcing question 23
3.4 Seetapun’s theorem 26
3.5 Preserving definitions . . . 31
3.6 Preserving hyperimmunities 33

Prerequisites: Chapter 2

The appellation first-jump control1

1: The name might be confusing at first,
since the technique is about computation
and not jump computation. Actually, by de-
ciding ω0

1(𝐿) properties, the first-jump con-
trol determines what the jump 𝐿

→ is, not
what it computes. Moreover, since the predi-
cate ε𝐿

𝑀
(𝑁)↑ is ω0

1(𝐿), the first-jump control
enables to decide 𝐿-computation.

encompasses the set of techniques to build
a set 𝐿 while controlling its ω0

1(𝐿) properties. An immediate application is
the construction of sets of low degree whenever the process is ϑ0

2. With the
development of reverse mathematics, the subject gained a whole lot of interest,
as being the main tool to prove separations over RCA0. We shall see a variety
of preservation properties (cone avoidance, PA avoidance, ...) motivated by
specific subsystems of second-order arithmetic, such as ACA0 and WKL0.
Nowadays, these techniques are part of the mandatory toolbox of a researcher
in reverse mathematics.

The general setting is the following: One wants to build a set 𝐿 satisfying some
structural properties (being a path through a tree, being homogeneous for a
coloring, or more generally being a solution to an instance of a mathematical
problem), while preserving some computational weakness properties (not
computing a fixed set, not being of PA degree, being of low degree). There
is a tension between the computational strength induced by the structural
properties, and the desired computational weakness. As it turns out, all these
proofs have a common denominator: the design of a so-called forcing ques-
tion with good definitional properties. The study of the relation between the
forcing question and iterated jump control constitutes the main subject of this
textbook.

The first weakness property that we shall consider is called cone avoidance.
Proofs of cone avoidance are good examples of the use of the forcing question,
and they do not require to make the whole construction e!ective, as in proofs
of lowness.

3.1 Context and motivation

Consider a mathematical problem P, formulated in term of instances and
solutions.2 The computability-theoretic study of P consists in identifying, given
a (computable) instance 𝑂 of P, the computational power of computing a
solution to 𝑂. For this, one proves lower bounds, of the form “There exists a
(computable) instance of P such that every solution is computationally strong”
and upper bounds of the form “Every (computable) instance of P admits a
computationally weak solution”.

One of the first questions to ask about the strength of a problem is its ability to
encode a Turing degree. More precisely, given a set 𝑃, is there a computable
instance of P such that every solution computes 𝑃? This question is about
the computational strength of P. One can ask the same question with no
computable restriction to the instance of P. It is then about the combinatorial
strength of P. The notion of cone avoidance is a strong negative answer to the
first question.

Definition 3.1.1.
It might be simpler to think of its unrela-
tivized version, where 𝑄 = ↓. Every known
natural problem which satisfies the unrel-
ativized version also satisfies the general
statement. However, one can create artificial
problems which do not.

A problem P admits cone avoidance if for every set 𝑄 and
every non-𝑄-computable set 𝑃, every 𝑄-computable instance 𝑂 of P admits
a solution 𝑅 such that 𝑃 is not 𝑄 ↔ 𝑅-computable. ↗

20 3 Cone avoidance

Informally, if a problem admits cone avoidance, then it is not able to encode any
non-computable Turing degree. If one drops the restriction by replacing “every
𝑄-computable instance 𝑂 of P” with “every instance 𝑂 of P”, one obtains the
notion of strong cone avoidance.

A proof of cone avoidance of a problem P is an interesting statement in its own
right, but it also has useful consequences in reverse mathematics. Recall that
ACA0 is the base system RCA0 augmented with the comprehension axiom for
arithmetical formulas with parameters. Since the halting set ↓→ is ω0

1-definable,
every 𝜑-model of ACA0 contains the halting set. 3

3: By the same argument, every 𝜑-model
of ACA0 is closed under the Turing jump.
Actually, there exists a smallest 𝜑-model
of ACA0 whose second-order part is exactly
the arithmetical sets. On the other hand, if a ϖ1

2 problem P admits cone avoidance4

4: A problem P is ϖ1
2 if if the relations

𝑂 ↘ dom P and 𝑅 ↘ P(𝑂) are both arith-
metically definable. Then, M |= P if

M |= ≃𝑂 ↘ dom P ⇐𝑅 ↘ P(𝑂)

, then it admits
an 𝜑-model which avoids the halting set, hence is not a model of ACA0.

Proposition 3.1.2. Fix a non-computable set 𝑃. Let P be a ϖ1
2 problem which

admits cone avoidance. There exists an 𝜑-model of RCA0 + P which does not
contain 𝑃. 𝜒

P!""#. Recall that an 𝜑-model is fully characterized by its second-order part,
and that it satisfies RCA0 i! its second-order part is a Turing ideal. Also recall
that ⇒·, ·⇑ : ℕ2 ⇓ ℕ is Cantor’s pairing function.

We are going to define a sequence of sets 𝑄0 ⇔𝑆 𝑄1 ⇔𝑆 . . . such that for
all 𝑇 ↘ ℕ,

(1) if 𝑇 = ⇒𝑀 , 𝑈⇑ and ε𝑄𝑈

𝑀
is a P-instance 𝑂, then 𝑄𝑇+1 computes a solution

to 𝑂;
(2) 𝑃 ⊋𝑆 𝑄𝑇 .

𝑄0 = ↓. Suppose we have defined 𝑄𝑇 and say 𝑇 = ⇒𝑀 , 𝑈⇑. If ε𝑄𝑈

𝑀
is not a

P-instance, then let 𝑄𝑇+1 = 𝑄𝑇 . Otherwise, by cone avoidance of P relativized
to 𝑄𝑇 , there is a solution𝑅 to ε𝑄𝑈

𝑀
such that 𝑃 ⊋𝑆 𝑄𝑇↔𝑅. Let 𝑄𝑇+1 = 𝑄𝑇↔𝑅.

Let I= {𝑂 ↘ 2ℕ : ⇐𝑇 𝑂 ⇔𝑆 𝑄𝑇}. By construction, the class I is a Turing
ideal. Moreover, by (1), every P-instance 𝑂 ↘ Iadmits a solution in I. Last,
by (2), 𝑃 ϱ I.

3.2 First examples

Before starting the development of an abstract framework to prove cone avoid-
ance, let us start with a few basic proofs, in order to see some emerging
patterns.

The most basic example of cone avoidance is Cohen genericity. Indeed, this
notion of forcing enjoys very nice computability-theoretic features: the partial
order is computable, with a computable domain. Recall that Cohen forcing is
the notion of forcing whose conditions are finite strings, partially ordered by
the su"x relation.

Theorem 3.2.1
Let 𝑃 be a non-computable set. For every su!ciently Cohen generic set 𝐿,
𝑃 ⊋𝑆 𝐿.

P!""#. It su"ces to prove the following lemma, where ε𝐿

𝑀
ς 𝑃 is a shorthand

for ⇐𝑁ε𝐿

𝑀
(𝑁)↖ ↙⇐𝑁ε𝐿

𝑀
(𝑁)↑ς 𝑃(𝑁).

3.2 First examples 21

5: In other words, 𝑉 is a set of pairs (input/-
value) such that one can find an extension
forcing ε𝐿

𝑀
(𝑁) to halt and output 𝑊. This set

will be recurrent in the proofs of cone avoid-
ance, with the 3-case analysis pattern.

8: The notation 𝑋 ∝ 𝑌 ⇓ 𝑍 is used for
partial functions from 𝑌 to 𝑍.

Lemma 3.2.2. For every condition 𝜓 ↘ 2<ℕ and every Turing index 𝑀 ↘ ℕ,
there is an extension 𝜔 ′ 𝜓 forcing ε𝐿

𝑀
ς 𝑃. 𝜒

P!""#. Fix a condition 𝜓. Consider the following set5

𝑉 = {(𝑁 , 𝑊) ↘ ℕ ∞ 2 : ⇐𝜔 ′ 𝜓 ε𝜔
𝑀
(𝑁)↑= 𝑊}

Note that the set 𝑉 is ω0
1. There are three cases:6

6: The idea is the following: the set 𝑉

claims to be a nice (ω0
1) description of a

set 𝑃 which is hard to describe (not com-
putable). Thus, either𝑉 gives only partial in-
formation about 𝑃 (Case 2) or it gives some
wrong information (Case 1).

⫅̸ Case 1: (𝑁 , 1 ∈ 𝑃(𝑁)) ↘ 𝑉 for some 𝑁 ↘ ℕ. Let 𝜔 ′ 𝜓 witness
(𝑁 , 1 ∈ 𝑃(𝑁)) ↘ 𝑉 , that is, let 𝜔 ′ 𝜓 be such that ε𝜔

𝑀
(𝑁)↑= 1 ∈ 𝑃(𝑁).

Then 𝜔 forces ε𝐿

𝑀
ς 𝑃.

⫅̸ Case 2: (𝑁 , 𝑃(𝑁)) ϱ 𝑉 for some 𝑁 ↘ ℕ. We claim that 𝜓 already
forces ε𝐿

𝑀
ς 𝑃. Indeed, if for some 𝑄 ↘ [𝜓], ε𝑄

𝑀
= 𝑃, then by the

use property, these is some 𝜔 ∋ 𝑄 such that ε𝜔
𝑀
(𝑁)↑= 𝑃(𝑁), and by

choosing 𝜔 long enough, it would witness (𝑁 , 𝑃(𝑁)) ↘ 𝑉 , contradiction.
⫅̸ Case 3: None of Case 1 and Case 2 holds. Then 𝑉 is a ω0

1 graph of the
characteristic function of 𝑃, hence 𝑃 is computable. This contradicts
our hypothesis.7

7: We assume here that the functional ε𝑀

is {0, 1}-valued.

We are now ready to prove Theorem 3.2.1. Given 𝑀 ↘ ℕ, let D𝑀 be the set of
all conditions 𝜔 forcing ε𝐿

𝑀
ς 𝑃. It follows from Lemma 3.2.2 that every D𝑀 is

dense, hence every {D𝑀 : 𝑀 ↘ ℕ}-generic set 𝐿 satisfies 𝑃 ⊋𝑆 𝐿.

Theorem 3.2.1 can be used to prove the existence of incomparable Turing
degrees, as shows the following exercise:

Exercise 3.2.3.

1. Fix a set 𝑃. Show that for every su"ciently Cohen generic set 𝐿, 𝑃
does not compute 𝐿.

2. Use Theorem 3.2.1 and the previous question to deduce the existence
of incomparable Turing degrees. 𝜒

The following example shows that every set 𝑌 admits a ϑ0
2 description which

avoids a cone. It is a fundamental bridge between computational weaknesses
and combinatorial weaknesses of theorems, as we shall see later.

Theorem 3.2.4
Fix a set 𝑌 and a non-computable set 𝑃. There exists a set 𝐿 such that
𝐿

→ △𝑆 𝑌 and 𝐿 ⫆̸𝑆 𝑃.

P!""#. By Shoenfield’s limit lemma [8], 𝐿→ △𝑆 𝑌 i! there is a 𝐿-computable
function 𝑋 : ℕ2 ⇓ 2 such that for every 𝑁 ↘ ℕ, lim𝑎 𝑋 (𝑁 , 𝑎) exists and
equals 𝑌(𝑁). We are therefore going to build directly the function 𝑋 by forcing,
and let 𝐿 be the graph of 𝑋 . The forcing conditions are pairs (𝑏 , 𝑇), such that

⫅̸ 𝑏 ∝ ℕ ∞ ℕ ⇓ {0, 1} is a partial function8 with two parameters whose
domain is finite, representing an initial segment of the function 𝑋 that
we are building.

⫅̸ 𝑐 is an integer “locking” the 𝑐 first columns of 𝑋 to the 𝑐 first bits of 𝑌,
meaning that from now on, when we extend the domain of 𝑏 with a new
pair (𝑁 , 𝑎), if 𝑁 < 𝑐 then 𝑏(𝑁 , 𝑎) = 𝑌(𝑁).

22 3 Cone avoidance

Note that set of conditions is computable,
but unlike Cohen forcing, the partial order is
not. Thankfully, for a fixed condition (𝑏 , 𝑇),
the set of all conditions extending (𝑏 , 𝑇)
is computable. Indeed, it su"ces to “hard
code” the initial segment 𝑌⫋

𝑇
in the algo-

rithm, which is a finite piece of information.

In other words the first 𝑐 columns of the function 𝑋 have already reached their
limit behavior, which is 𝑌⫋

𝑐
. The interpretation [𝑏 ,𝑐] of a condition (𝑏 ,𝑐) is

the class of all partial or total functions 𝑑 ∝ ℕ2 ⇓ 2 such that

(1) 𝑏 ∝ 𝑑, i.e. dom 𝑏 ∝ dom 𝑑 and for all (𝑁 , 𝑎) ↘ dom 𝑏, 𝑏(𝑁 , 𝑎) =
𝑑(𝑁 , 𝑎);

(2) for all (𝑁 , 𝑎) ↘ dom 𝑑 \ dom 𝑏, if 𝑁 < 𝑐, then 𝑑(𝑁 , 𝑎) = 𝑌(𝑁).
A condition (𝑑 , 𝑇) extends (𝑏 ,𝑐) (denoted (𝑑 , 𝑇) ⇔ (𝑏 ,𝑐)) if 𝑇 △ 𝑐 and
𝑑 ↘ [𝑏 ,𝑐]. Every filter F for this notion of forcing induces a function 𝑋F =⋃{𝑏 : (𝑏 , 𝑇) ↘ F}. In particular, 𝑋F ↘ ⋂{[𝑏 , 𝑇] : (𝑏 , 𝑇) ↘ F}. Moreover,
if F is su"ciently generic, then 𝑋F is total, and lim𝑁 𝑋F(𝑁 , 𝑎) = 𝑌(𝑁).

Lemma 3.2.5. For every condition (𝑏 , 𝑇) and every Turing index 𝑀 ↘ ℕ, there
is an extension (𝑑 , 𝑇) ⇔ (𝑏 , 𝑇) forcing ε 𝑋

𝑀
ς 𝑃. 𝜒

P!""#. Fix a condition (𝑏 , 𝑇). Consider the following set

This is the second appearance of the set 𝑉
of all pairs (input/value) such that one can
find an extension forcing ε 𝑋

𝑀
(𝑁) to halt and

output 𝑊.

𝑉 = {(𝑁 , 𝑊) ↘ ℕ ∞ 2 : ⇐𝑑 ↘ [𝑏 , 𝑇] ε𝑑

𝑀
(𝑁)↑= 𝑊}

Note that the set 𝑉 is ω0
1 since by the use property, the existential quantifier is

first-order. There are three cases:

We have the same 3-case analysis as in the
proof Lemma 3.2.2, and which is character-
istic of proofs of cone avoidance.

⫅̸ Case 1: (𝑁 , 1 ∈ 𝑃(𝑁)) ↘ 𝑉 for some 𝑁 ↘ ℕ. Let 𝑑 ↘ [𝑏 , 𝑇] witness
(𝑁 , 1∈𝑃(𝑁)) ↘ 𝑉 , that is, let 𝑑 ↘ [𝑏 , 𝑇] be such that ε𝑑

𝑀
(𝑁)↑= 1∈𝑃(𝑁).

Then (𝑑 , 𝑇) forces ε 𝑋

𝑀
ς 𝑃.

⫅̸ Case 2: (𝑁 , 𝑃(𝑁)) ϱ 𝑉 for some 𝑁 ↘ ℕ. We claim that (𝑏 , 𝑇) already
forces ε 𝑋

𝑀
ς 𝑃. Indeed, if for some 𝑋 ↘ [𝑏 , 𝑇], ε 𝑋

𝑀
= 𝑃, then by the

use property, these is some finite 𝑑 ∝ 𝑋 such that ε𝑑

𝑀
(𝑁)↑= 𝑃(𝑁),

and by choosing dom 𝑑 ▽ dom 𝑏, it would witness (𝑁 , 𝑃(𝑁)) ↘ 𝑉 ,
contradiction.

⫅̸ Case 3: None of Case 1 and Case 2 holds. Then 𝑉 is a ω0
1 graph of the

characteristic function of 𝑃, hence 𝑃 is computable. This contradicts
our hypothesis.

We are now ready to prove Theorem 3.2.4. Let F be a su"ciently generic
filter for this notion of forcing, and let 𝑋 = 𝑋F. The set of conditions (𝑏 , 𝑇)
such that 𝑁 ↘ dom 𝑏 is dense, thus 𝑋 is total. Moreover, for every 𝑒 ↘ ℕ, the
set of conditions (𝑏 , 𝑇) such that 𝑇 △ 𝑒 is also dense, so for every 𝑁 ↘ ℕ,
lim𝑎 𝑋 (𝑁 , 𝑎) = 𝑌(𝑁). Last, by Lemma 3.2.5, 𝑋 ⫆̸𝑆 𝑃. This completes the
proof of Theorem 3.2.4.

Recall that a set 𝐿 is of high degree if 𝐿→ △𝑆 ↓→→. It follows from Theorem 3.2.4
that if 𝑃 is a non-computable set, there exists a set 𝐿 of high degree such that
𝑃 ⊋𝑆 𝐿.

Our last example is the famous cone avoidance ϖ0
1 basis theorem. It says

that if every path of an infinite computable binary tree computes a single set,
then this set is computable. This will be our first example of the use of an
over-approximation because the natural formula does not have the desired
complexity.

3.3 Forcing question 23

Theorem 3.2.6 (Jockusch and Soare [9])
Fix a non-computable set 𝑃 and a non-empty ϖ0

1 class P ∝ 2ℕ . There
exists a member 𝐿 ↘ P such that 𝐿 ⫆̸𝑆 𝑃.

P!""#. Jockusch-Soare forcing is the notion of forcing whose conditions are
infinite computable binary trees 𝑆 ∝ 2<ℕ , partially ordered by the subset
relation. The interpretation [𝑆] of a tree 𝑆 is the class of its paths. Every
su"ciently filter F for this notion of forcing induces a path 𝐿F which is the
unique element of

⋂{[𝑆] : 𝑆 ↘ F}.

Lemma 3.2.7. For every condition 𝑆 and every Turing index 𝑀 ↘ ℕ, there is
an extension 𝑓 ∝ 𝑆 forcing ε𝐿

𝑀
ς 𝑃. 𝜒

P!""#. Fix a condition 𝑆. Consider the following set

A natural first attempt would be to define U

as the set

{(𝑁 , 𝑊) : ⇐𝜓 extendible in 𝑆 ε𝜓
𝑀
(𝑁)↑= 𝑊}

However, being extendible is aϖ0
1 predicate,

hence 𝑉 would be ω0
2. The third case would

then yield that 𝑃 is ↓→-computable, which
does not contradict our hypothesis.

The over-approximation is the following: at
every length, at least one node must be ex-
tendible in 𝑆, so it su"ces to ask the prop-
erty to hold for every nodes of a given length.

𝑉 = {(𝑁 , 𝑊) ↘ ℕ ∞ 2 : ⇐𝑔 ↘ ℕ≃𝜓 ↘ 2𝑔 ̸ 𝑆 ε𝜓
𝑀
(𝑁)↑= 𝑊}

Note that the set 𝑉 is ω0
1. There are three cases:

We still have the same 3-case analysis as in
the proof Lemma 3.2.2, but the situation is
slightly di!erent: instead of taking a proper
extension in Case 1 and already forcing the
property in Case 2, the situation is inverted.

⫅̸ Case 1: (𝑁 , 1 ∈ 𝑃(𝑁)) ↘ 𝑉 for some 𝑁 ↘ ℕ. We claim that 𝑆 already
forces ε𝐿

𝑀
ς 𝑃. Indeed, for every 𝐿 ↘ [𝑆], letting 𝜓 = 𝐿⫋

𝑔
, where 𝑔

witnesses (𝑁 , 1 ∈ 𝑃(𝑁)) ↘ 𝑉 , we have 𝜓 ↘ 2𝑔 ̸ 𝑆, hence ε𝜓
𝑀
(𝑁)↑=

1 ∈ 𝑃(𝑁). By the use property, ε𝐿

𝑀
(𝑁)↑= 1 ∈ 𝑃(𝑁)

⫅̸ Case 2: (𝑁 , 𝑃(𝑁)) ϱ 𝑉 for some 𝑁 ↘ ℕ. Let

𝑓 = {𝜓 ↘ 𝑆 : ≃𝑈 < |𝜓| ε𝜓
𝑀
(𝑁)[𝑈]↖ ↙ε𝜓

𝑀
(𝑁)[𝑈]↑ς 𝑃(𝑁)}

Since (𝑁 , 𝑃(𝑁)) ϱ 𝑉 , 𝑓 contains a string of every length. Moreover, 𝑓
is closed under prefix, so it is an infinite binary subtree of 𝑆. Again, by
the use property, 𝑓 forces ε𝐿

𝑀
ς 𝑃.

⫅̸ Case 3: None of Case 1 and Case 2 holds. Then 𝑉 is a ω0
1 graph of the

characteristic function of 𝑃, hence 𝑃 is computable. This contradicts
our hypothesis.

We are now ready to prove Theorem 3.2.6. Let Fbe a su"ciently generic filter
for this notion of forcing, and let 𝐿 = 𝐿F. By Lemma 3.2.7, 𝐿 ⫆̸𝑆 𝑃. This
completes the proof of Theorem 3.2.6.

Exercise 3.2.8. A (computable) Mathias condition is a pair (𝜓,𝑂) where 𝜓 ↘
2<ℕ and 𝑂 ∝ ℕ is an infinite (computable) set with |𝜓| < min𝑂. The
interpretation [𝜓,𝑂] of a (computable) Mathias condition is the class {𝑅 ↘
2ℕ : 𝜓 ∝ 𝑅 ∝ 𝜓 ↦ 𝑂}, identifying 𝜓 with the finite set {𝑇 < |𝜓| : 𝜓(𝑇) = 1}.
Intuitively, 𝜓 is the initial segment of the set that we construct, and 𝑂 is an
infinite reservoir which restricts the futur elements of the set.

A condition (𝜔,𝑅) extends a condition (𝜓,𝑂) if 𝜔 ′ 𝜓, 𝑅 ∝ 𝑂 and 𝜔 \ 𝜓 ∝ 𝑂.
Every filter Ffor this notion of forcing induces a set 𝐿F =

⋃{𝜓 : (𝜓,𝑂) ↘ F}.

Prove that if 𝑃 is a non-computable set, then for every su"ciently generic filter
F, 𝑃 ⊋𝑆 𝐿F. 𝜒

3.3 Forcing question

One can easily see an emerging pattern in all the previous proofs of cone
avoidance. In every case, given a condition 𝑕, one defines a set 𝑉 of pairs

24 3 Cone avoidance

(𝑁 , 𝑊) such that such that there is an extension forcing ε𝐿

𝑀
(𝑁)↑= 𝑊. Moreover,

for every pair (𝑁 , 𝑊) outside 𝑉 , there is an extension forcing the opposite. This
motivates the following definition:

Definition 3.3.1. Given a notion of forcing (ℙ,⇔) and a family of formulas
φ, a forcing question is a relation ?∀ : ℙ ∞ φ such that, for every 𝑕 ↘ ℙ and
𝜕(𝐿) ↘ φ,

1. If 𝑕 ?∀𝜕(𝐿), then there is an extension 𝑖 ⇔ 𝑕 forcing 𝜕(𝐿) ;
2. If 𝑕 ?⫌𝜕(𝐿), then there is an extension 𝑖 ⇔ 𝑕 forcing ¬𝜕(𝐿). ↗

One can see a forcing question as a completion of the forcing relation. In-
tuitively, given a formula 𝜕(𝐿) ↘ φ, one can divide the conditions in ℙ into
three categories: the ones which force 𝜕(𝐿), those which force ¬𝜕(𝐿), and
the ones which do not decide 𝜕(𝐿). A forcing question has no degree of
freedom when considering conditions of the first two categories: it must give
the appropriate answer. On the other hand, a condition belonging to the third
category has extensions forcing 𝜕(𝐿) and other extensions forcing ¬𝜕(𝐿). A
forcing question draws a dividing line within this category.

Figure 3.1: The yellow part and the dark
blue part represent the conditions forcing a
fixed ω0

1 and its negation, respectively. The
light blue part represent the conditions of the
third category. In the proof of Theorem 3.2.6,
the dividing line is at the left-most position,
while for Cohen forcing, the dividing line is
at the opposite position.

Forcing ϖ0
1Forcing ω0

1

Jockusch-Soare
forcing question

Cohen
forcing question

Exercise 3.3.2. Show that a relation ?∀ : ℙ∞ φ is a forcing question for φ i! it
satisfies the following properties:

1. If 𝑕 forces 𝜕(𝐿), then 𝑕 ?∀𝜕(𝐿) ;
2. If 𝑕 forces ¬𝜕(𝐿), then 𝑕 ?⫌𝜕(𝐿). 𝜒

In each cone avoidance proof, one then considers the following set:

𝑉 = {(𝑁 , 𝑊) ↘ ℕ ∞ 2 : 𝑕 ?∀ε𝐿

𝑀
(𝑁)↑= 𝑊}

By definition of a forcing question, the two first cases can be handled abstractly.
On the other hand, the contradiction of the third case lies on the complexity of
the set 𝑉 . This is our last ingredient of the proof.

Definition 3.3.3. Given a notion of forcing (ℙ,⇔) and a family of formulas
φ, a forcing question is φ-preserving if for every 𝑕 ↘ ℙ and every formula
𝜕(𝐿, 𝑁) ↘ φ, the relation 𝑕 ?∀𝜕(𝐿, 𝑁) is in φ uniformly in 𝑁. ↗

We are now ready to prove our abstract theorem of cone avoidance.

Theorem 3.3.4
Let (ℙ,⇔) be a notion of forcing with a ω0

1-preserving forcing question.

3.3 Forcing question 25

For every non-computable set 𝑃 and every su!ciently generic filter F,
𝑃 ⊋𝑆 𝐿F.

P!""#. It su"ces to prove the following lemma:

Lemma 3.3.5. For every condition 𝑕 ↘ ℙ and every Turing index 𝑀 ↘ ℕ, there
is an extension 𝑖 ⇔ 𝑕 forcing ε𝐿

𝑀
ς 𝑃. 𝜒

P!""#. Consider the following set

𝑉 = {(𝑁 , 𝑊) ↘ ℕ ∞ 2 : 𝑕 ?∀ε𝐿

𝑀
(𝑁)↑= 𝑊}

Since the forcing question is ω0
1-preserving, the set 𝑉 is ω0

1. There are three
cases:

⫅̸ Case 1: (𝑁 , 1∈𝑃(𝑁)) ↘ 𝑉 for some 𝑁 ↘ ℕ. By Property (1) of the forcing
question, there is an extension 𝑖 ⇔ 𝑕 forcing ε𝐿

𝑀
(𝑁)↑= 1 ∈ 𝑃(𝑁).

⫅̸ Case 2: (𝑁 , 𝑃(𝑁)) ϱ 𝑉 for some 𝑁 ↘ ℕ. By Property (2) of the forcing
question, there is an extension 𝑖 ⇔ 𝑕 forcing ε𝐿

𝑀
(𝑁)↖ or ε𝐿

𝑀
(𝑁)↑ς 𝑃(𝑁).

⫅̸ Case 3: None of Case 1 and Case 2 holds. Then 𝑉 is a ω0
1 graph of the

characteristic function of 𝑃, hence 𝑃 is computable. This contradicts
our hypothesis.

We are now ready to prove Theorem 3.3.4. Given 𝑀 ↘ ℕ, let D𝑀 be the set of
all conditions 𝑖 ↘ ℙ forcing ε𝐿

𝑀
ς 𝑃.. It follows from Lemma 3.3.5 that every

D𝑀 is dense, hence every su"ciently generic filter F is {D𝑀 : 𝑀 ↘ ℕ}-generic,
so 𝑃 ⊋𝑆 𝐿F. This completes the proof of Theorem 3.3.4.

By the abstract theorem above, the question whether a problem admits cone
avoidance is reduced to the question whether one can construct solutions using
a notion of forcing which admits a forcing question with the right definitional
property.

We can revisit the previous proofs in terms of forcing questions.

Exercise 3.3.6. Given a string 𝜓 ↘ 2<ℕ and a ω0
1 formula 𝜕(𝐿), define

𝜓 ?∀𝜕(𝐿) to hold if there is some 𝜔 ′ 𝜓 such that 𝜕(𝜔) holds. Prove that the
relation is a ω0

1-preserving forcing question for Cohen forcing. 𝜒

Exercise 3.3.7. Given a computable infinite binary tree 𝑆 ∝ 2<ℕ and a ω0
1

formula 𝜕(𝐿), define 𝑆 ?∀𝜕(𝐿) to hold if there is some level 𝑔 ↘ ℕ such
that 𝜕(𝜓) holds for every node 𝜓 at level 𝑔 in 𝑆. Prove that the relation is a
ω0

1-preserving forcing question for Jockusch-Soare forcing. 𝜒

The notion of forcing question is more useful as a unifying terminology than
as a formal notion. We shall see in the next section a disjunctive notion of
forcing building two generic sets simultaneously. Although the concept of
forcing question will need some adaptation to the current setting, the similarity
of terminology will help emphasize the common features with the previous
proofs of cone avoidance.

26 3 Cone avoidance

9: We shall often identify [𝑂]𝑇 with the
set of increasing ordered 𝑇-tuples,
and write 𝑋 (𝑁0 , . . . , 𝑁𝑇∈1) rather
than 𝑋 ({𝑁0 , . . . , 𝑁𝑇∈1}), assuming
𝑁0 < · · · < 𝑁𝑇∈1.

10: Ramsey’s theorem is formulated in
terms of colorings of [ℕ]𝑇 . However, it
is a set-theoretic statement, and it still
holds when replacing ℕ with any infinite
set. One can prove prove this stronger
statement as a blackbox: Given an infinite
set 𝑂 ∝ ℕ and a coloring 𝑋 : [𝑂]𝑇 ⇓ 𝑒,
define the coloring 𝑏 : [ℕ]𝑇 ⇓ 𝑒 by
𝑏(𝑗) = 𝑋 (𝜖[𝑗]), where 𝜖 : ℕ ⇓ 𝑂 is
the canonical bijection. For any infinite
𝑏-homogeneous set 𝑘 ∝ ℕ, the set 𝜖[𝑘]
is an infinite 𝑋 -homogeneous subset of 𝑂.

When using the stronger statement,
one must take into account the compu-
tational strength of the set 𝑂, as the
𝑋 -homogeneous set is 𝑘 ↔ 𝑂-computable.

11: It might be useful to consider sets 𝑌 ↘
2ℕ as instances of RT1

2. A solution to 𝑌 is
then an infinite subset 𝑘 ∝ 𝑌 or 𝑘 ∝ 𝑌.

3.4 Seetapun’s theorem

In short, Seetapun’s theorem states that Ramsey’s theorem for pairs admits
cone avoidance. It is one of the most celebrated theorems of reverse math-
ematics. Given a set 𝑂 ∝ ℕ, we let [𝑂]𝑇 denote the set of all 𝑇-element
subsets of 𝑂.9 A set 𝑘 ∝ ℕ is homogeneous for a coloring 𝑋 : [ℕ]𝑇 ⇓ 𝑒

if 𝑋 is monochromatic on [𝑘]𝑇 . Ramsey’s theorem for 𝑇-tuples and 𝑒 colors
is the problem RT𝑇

𝑒
whose instances are colorings 𝑋 : [ℕ]𝑇 ⇓ 𝑒 and whose

solutions are infinite 𝑋 -homogeneous sets.10

In particular, RT1
𝑒

is the infinite pigeonhole principle11, while the statement RT2
𝑒

states that if the edges of an infinite clique is 𝑒-colored, then there is an infinite
subset of vertices whose induced subgraph is monochromatic. The question
whether Ramsey’s theorem for pairs implies ACA0 over RCA0 was open for
a decade, before Seetapun [10] answered it negatively by proving that RT2

2
admits cone avoidance. Since then, the original proof was simplified [11] and
extended to other preservation properties [12]. We will present the simplified
version and leave the original one as an exercise.

The modern version of Seetapun’s theorem is divided into two steps, based on
the decomposition of Ramsey’s theorem for pairs into the cohesiveness and
the pigeonhole principles. An infinite set 𝑃 ∝ ℕ is cohesive for a sequence
of sets ∃𝑙 = 𝑙0 , 𝑙1 , . . . if for every 𝑇 ↘ ℕ, 𝑃 ∝¬

𝑙𝑇 or 𝑃 ∝¬
𝑙𝑇 , where

∝¬ means “included up to finite changes”. The cohesiveness principle is the
problem COH whose instances are infinite sequences of sets, and whose
solutions are infinite cohesive sets.

We start with a proof of Ramsey’s theorem for pairs using the cohesiveness
principle and the pigeonhole principle, with no computability-theoretic consid-
eration.

Theorem 3.4.1 (Ramsey)
Every coloring 𝑋 : [ℕ]2 ⇓ 2 admits an infinite 𝑋 -homogeneous set.

P!""#. The proof is divided into three steps.

From a computability-theoretic perspective,
the sequence ∃𝑙 is 𝑋 -computable, the col-
oring 𝑋 is ϑ0

2(𝑋 ↔ 𝑂), and the set 𝑘 is
𝑋 ↔ 𝑂 ↔ 𝑅-computable.

Cohesive step: Let ∃𝑙 = 𝑙0 , 𝑙1 , . . . be the sequence of sets defined for
every 𝑁 ↘ ℕ by 𝑙𝑁 = {𝑎 ↘ ℕ : 𝑋 (𝑁 , 𝑎) = 1}. By COH, there is an infinite
∃𝑙-cohesive set 𝑂 ∝ ℕ. In particular, for every 𝑁 ↘ 𝑂, lim𝑎↘𝑂 𝑋 (𝑁 , 𝑎) exists.

Pigeonhole step: Let 𝑋 : 𝑂 ⇓ 2 be the limit coloring of 𝑋 , that is, 𝑋 (𝑁) =
lim𝑎↘𝑂 𝑋 (𝑁 , 𝑎). By RT1

2, there is an infinite 𝑋 -homogeneous set 𝑅 ∝ 𝑂 for
some color 𝑚 < 2.

Post-processing: Since for every 𝑁 ↘ 𝑅, lim𝑎↘𝑅 𝑋 (𝑁 , 𝑎) = 𝑚, one can thin out
the set 𝑅 to obtain an infinite 𝑋 -homogeneous subset 𝑘 ∝ 𝑅.

Seetapun’s theorem will therefore be proven by combining cone avoidance of
the cohesiveness principle and strong cone avoidance of the pigeonhole prin-
ciple. There exists a simple proof of cone avoidance of COH using computable
Mathias forcing.

3.4 Seetapun’s theorem 27

12: One could have used a variant of Math-
ias forcing where conditions are pairs (𝜓,𝑂)
such that 𝑃 ⊋𝑆 𝑂. In general, one requires
the reservoirs to satisfy the desired property
of the theorem.

The natural proof of COH consists in decid-
ing which one of 𝑙0 or 𝑙0 is infinite (say
𝑙0), then picking an element 𝑁0 ↘ 𝑙0, then
deciding which one of 𝑙0 ̸ 𝑙1 or 𝑙0 ̸ 𝑙1
is infinite (say 𝑙0 ̸ 𝑙1), then picking an
element 𝑁1 ↘ 𝑙0 ̸ 𝑙1, and so on. The
class C(∃𝑙) represents the collection of all
“valid” decisions, that is, choices which will
not yield a finite set.

13: The proof of Ramsey’s theorem in-
volves only ϑ0

2 instances of the pigeon-
hole principle. Thus, at first sight, it seems
too strong to consider arbitrary instances.
However, by Theorem 3.2.4, every instance
of RT1

2 is ϑ0
2 relative to a cone avoiding de-

gree, so considering arbitrary instances or
ϑ0

2 instances is equivalent.

Theorem 3.4.2
Let 𝑃 be a non-computable set. For every uniformly computable sequence
of sets 𝑙0 , 𝑙1 , . . . , there is an infinite ∃𝑙-cohesive set 𝐿 such that 𝑃 ⊋𝑆 𝐿.

P!""#. Recall the notion of computable Mathias forcing12 from Exercise 3.2.8.
Given a condition (𝜓,𝑂) and aω0

1 formula 𝜕(𝐿), one can define aω0
1-preserving

forcing question (𝜓,𝑂) ?∀𝜕(𝐿) which holds if there is some 𝜗 ∝ 𝑂 such that
𝜕(𝜓 ↦ 𝜗) holds. Thus, for every su"ciently generic filter F, 𝑃 ⊋𝑆 𝐿F. We
now show that 𝐿F is ∃𝑙-cohesive.

Given some 𝑇 ↘ ℕ, let D𝑇 be the set of all conditions (𝜓,𝑂) such that either
𝑂 ∝ 𝑙𝑇 , or 𝑂 ∝ 𝑙𝑇 . The set D𝑇 is dense, since given a computable Mathias
condition (𝜓,𝑂), either 𝑂 ̸ 𝑙𝑇 is infinite, or 𝑂 ̸ 𝑙𝑇 is infinite (say the former
case holds), in which case (𝜓,𝑂 ̸𝑙𝑇) ↘ D𝑇 . Thus, if F is {D𝑇}𝑇↘ℕ-generic,
then 𝐿F is ∃𝑙-cohesive.

Actually, the exact computational strength of the cohesiveness principle is well-
understood: given a uniformly computable sequence of sets ∃𝑙 = 𝑙0 , 𝑙1 , . . . ,
and 𝜓 ↘ 2<ℕ , one can define the set 𝑙𝜓 as follows:

𝑙𝜓 =
⋂

𝜓(𝑇)=0
𝑙𝑇

⋂
𝜓(𝑇)=1

𝑙𝑇

Then, let C(∃𝑙) be the ϖ0
1(↓→) class of all 𝑛 ↘ 2ℕ such that for every 𝜓 ∅ 𝑛,

𝑙𝜓 is infinite.

Exercise 3.4.3 (Jockusch and Stephan [13]).

1. Fix a uniformly computable sequence of sets ∃𝑙 = 𝑙0 , 𝑙1 , Show
that the degrees of the ∃𝑙-cohesive sets are exactly the degrees whose
jump computes a a member of C(∃𝑙).

2. Show that for every ϖ0
1(↓→) class P ∝ 2ℕ , there exists a uniformly

computable sequence of sets ∃𝑙 = 𝑙0 , 𝑙1 , . . . such that C(∃𝑙) = P. 𝜒

It follows from Exercise 3.4.3 that the computability-theoretic study of COH
is inherited from the study of ϖ0

1 classes. In particular, since there exists a
universal ϖ0

1 class whose members are of PA degree, there exists a maximally
di"cult sequence of uniformly computable sets ∃𝑙 = 𝑙0 , 𝑙1 , . . . such that the
jump of every ∃𝑙-cohesive set is of PA degree over ↓→.

Exercise 3.4.4. Combine Exercise 3.4.3 and Theorem 3.2.4 to give an alter-
native proof of Theorem 3.4.2. 𝜒

Exercise 3.4.5 (Patey [14]). Use Exercise 3.4.3 to prove that if a computable
instance of COH admits a solution of low degree, then it admits a computable
solution. 𝜒

The last component of our proof of Seetapun’s theorem is strong cone avoid-
ance of the pigeonhole principle.13

Theorem 3.4.6 (Dzhafarov and Jockusch [11])
Let 𝑃 be a non-computable set. For every set 𝑌, there is an infinite sub-
set 𝑘 ∝ 𝑌 or 𝑘 ∝ 𝑌 such that 𝑃 ⊋𝑆 𝑘.

28 3 Cone avoidance

14: One could use Posner’s trick, saying
that if 𝐿0 and 𝐿1 both compute 𝑃, then
there is a single Turing functional ε𝑀 such
that ε𝐿0

𝑀
= ε𝐿1

𝑀
= 𝑃. Then, the require-

ment becomes R𝑀 : ε𝐿0
𝑀

ς 𝑃 ↙ε𝐿1
𝑀

ς 𝑃.

16: The naïve set to consider would
be 𝑉 = {(𝑁 , 𝑊) : ⇐𝑚 < 2 ⇐𝜗 ∝
𝑂 ̸𝑌𝑚 ε

𝜓
𝑚
↦𝜗

𝑀
𝑚

(𝑁)↑= 𝑊}. It would yield valid
forcing question, but with a bad definitional
complexity: the set 𝑉 is ω0

1(𝑂 ↔ 𝑌). The
third case would yield that 𝑃 ⇔𝑆 𝑂 ↔ 𝑌,
which is not a contradiction.

One must get rid of the set 𝑌 which is
arbitrary complex. For this, we use an
over-approximation by considering all
instances of RT1

2. Since the class of all
instances of RT1

2 is e!fectively closed in
Cantor space, hence e!ectively compact,
this over-approximation yields a ω0

1(𝑂) set.

17: Consider the tree of finite 2-partitions
of initial segments of ℕ.

P!""#. Fix 𝑃 and 𝑌. The first di"culty of this theorem is the disjunctive nature
of the statement. One does not know in advance what side of 𝑌 is more suitable
to build an infinite subset. This is why we are going to build two sets 𝐿0 ,𝐿1
simultaneously, with 𝐿0 ∝ 𝑌 and 𝐿1 ∝ 𝑌. For simplicity, let 𝑌0 = 𝑌 and
𝑌1 = 𝑌.

The two sets will be constructed through a variant of Mathias forcing, whose
conditions are triples (𝜓0 , 𝜓1 ,𝑂) where

1. (𝜓𝑚 ,𝑂) is a Mathias condition for each 𝑚 < 2 ;
2. 𝜓𝑚 ∝ 𝑌𝑚 ;
3. 𝑃 ⊋𝑆 𝑂.

There is an easy way to see that at least
one of the two initial segments is extendible
into an infinite solution: Given a condition
(𝜓0 , 𝜓1 ,𝑂), there is some 𝑚 < 2 such that
𝑂 ̸ 𝑌𝑚 is infinite. Thus, 𝜓𝑚 ↦ (𝑂 ̸ 𝑌𝑚) is
an infinite subset of 𝑌𝑚 .

One must really think of a condition as a pair of Mathias conditions which share
a same reservoir. The interpretation [𝜓0 , 𝜓1 ,𝑂] of a condition (𝜓0 , 𝜓1 ,𝑂) is
the class

[𝜓0 , 𝜓1 ,𝑂] = {(𝐿0 ,𝐿1) : ≃𝑚 < 2 𝜓𝑚 ∋ 𝐿𝑚 ∝ 𝜓𝑚 ↦ 𝑂}Note that throughout the proof, the only ma-
nipulations of the reservoir are finite trun-
cation and splitting based on a ϖ0

1 class
of 2-colorings. Thus, the whole argument
would work by fixing a Scott ideal M such
that 𝑃 ϱ M and requiring 𝑂 ↘ M.

A condition (𝜔0 , 𝜔1 ,𝑅) extends (𝜓0 , 𝜓1 ,𝑂) if (𝜔𝑚 ,𝑅) Mathias extends (𝜓𝑚 ,𝑂)
for each 𝑚 < 2. Any filter F induces two sets 𝐿F,0 and 𝐿F,1 defined by
𝐿F,𝑚 =

⋃{𝜓𝑚 : (𝜓0 , 𝜓1 ,𝑂) ↘ F}. Note that (𝐿F,0 ,𝐿F,1) ↘
⋂{[𝜓0 , 𝜓1 ,𝑂] :

(𝜓0 , 𝜓1 ,𝑂) ↘ F}.

The goal is therefore to build two infinite sets 𝐿0 ,𝐿1, satisfying the following
requirements for every 𝑀0 , 𝑀1 ↘ ℕ: 14

R𝑀0 ,𝑀1 : ε𝐿0
𝑀0 ς 𝑃 ↙ε𝐿1

𝑀1 ς 𝑃

If every requirement is satisfied, then an easy pairing argument15

15: A pairing argument says that if for every
(𝑜 , 𝑝) ↘ ℕ2, either 𝑜 ↘ 𝑌 or 𝑝 ↘ 𝑍, then
either 𝑌 = ℕ or 𝑍 = ℕ.

shows that
either 𝑃 ⊋𝑆 𝐿0, or 𝑃 ⊋𝑆 𝐿1. However, in general, it is not possible to ensure
that 𝐿0 and 𝐿1 are both infinite. For example, 𝑌 could be finite or co-finite.
Thankfully, in any of these cases, there is a simple computable solution. More
generally, we make the following assumption:

There is no infinite set 𝑘 ∝ 𝑌 or 𝑘 ∝ 𝑌 such that 𝑃 ⊋𝑆 𝑘. (H1)

Under this assumption, one can prove that if F is su"ciently generic, then
both 𝐿F,0 and 𝐿F,1 are infinite.

Lemma 3.4.7. Suppose (H1). Let 𝑕 = (𝜓0 , 𝜓1 ,𝑂) be a condition and 𝑚 < 2.
There is an extension (𝜔0 , 𝜔1 ,𝑅) of 𝑕 and some 𝑇 > |𝜓𝑚 | such that 𝑇 ↘ 𝜔𝑚 .𝜒

P!""#. If 𝑂 ̸ 𝑌
𝑚 is empty, then 𝑂 ∝ 𝑌

1∈𝑚 , but 𝑃 ⊋𝑆 𝑂, which contradicts
(H1). Thus, there is 𝑇 ↘ 𝑂 ̸ 𝑌

𝑚 . Let 𝜔𝑚 = 𝜓𝑚 ↦ {𝑇}, and 𝜔1∈𝑚 = 𝜓1∈𝑚 .
Then, (𝜔0 , 𝜔1 ,𝑂 \ {0, . . . , 𝑇 ∈ 1}) is an extension of 𝑕 such that 𝑇 ↘ 𝜔𝑚 .

We will now prove the core lemma.

Lemma 3.4.8. Let 𝑕 = (𝜓0 , 𝜓1 ,𝑂) be a condition, and 𝑀0 , 𝑀1 ↘ ℕ. There is
an extension (𝜔0 , 𝜔1 ,𝑅) of 𝑕 forcing R𝑀0 ,𝑀1 . 𝜒

P!""#. Consider the following set16

𝑉 = {(𝑁 , 𝑊) ↘ ℕ ∞ 2 : ≃𝑄0 ℜ 𝑄1 = 𝑂 ⇐𝑚 < 2 ⇐𝜗 ∝ 𝑄𝑚 ε
𝜓𝑚↦𝜗
𝑀𝑚

(𝑁)↑= 𝑊}

At first sight, this set seems computationally very strong, as it contains a
universal second-order quantification. However, by a compactness argument17,

3.4 Seetapun’s theorem 29

Because of the use of an over-
approximation, in Case 2, the instance 𝑍

of RT1
2 witnessing the negation has nothing

to do with the original instance 𝑌. The
instance 𝑍 is chosen so that every solution
to it will satisfy the ϖ0

1 fact. By committing
to be simultaneously a solution to 𝑌

and 𝑍, one can create a solution to 𝑌

which forces the ϖ0
1 fact. This ability to

be simultaneously a solution to multiple
instances is a feature of Ramsey-type
statements.

the set can be equivalently defined as

{(𝑁 , 𝑊) ↘ ℕ ∞ 2 : ⇐𝑔 ↘ ℕ≃𝑄0 ℜ 𝑄1 = 𝑂⫋
𝑔
⇐𝑚 < 2 ⇐𝜗 ∝ 𝑄𝑚 ε

𝜓𝑚↦𝜗
𝑀𝑚

(𝑁)↑= 𝑊}

Thus, the set 𝑉 is ω0
1(𝑂). There are three cases:

⫅̸ Case 1: (𝑁 , 1 ∈ 𝑃(𝑁)) ↘ 𝑉 for some 𝑁 ↘ ℕ. Letting 𝑄0 = 𝑌0 ̸ 𝑂

and 𝑄1 = 𝑌1 ̸ 𝑂, there is some 𝑚 < 2 and some 𝜗 ∝ 𝑄𝑚 such
that ε𝜓𝑚↦𝜗

𝑀𝑚
(𝑁) ↑= 1 ∈ 𝑃(𝑁). Letting 𝜔𝑚 = 𝜓𝑚 ↦ 𝜗 and 𝜔1∈𝑚 = 𝜓1∈𝑚 ,

the condition (𝜔0 , 𝜔1 ,𝑂 \ {0, . . . ,max 𝜗}) is an extension of 𝑕 forcing
ε𝐿𝑚

𝑀𝑚
(𝑁) ↑ς 𝑃(𝑁).

⫅̸ Case 2: (𝑁 , 𝑃(𝑁)) ϱ 𝑉 for some 𝑁 ↘ ℕ. Consider the class P of all
sets 𝑍 ↘ 2ℕ such that, letting 𝑍0 = 𝑍 and 𝑍1 = 𝑍, for every 𝑚 < 2,
and every 𝜗 ∝ 𝑂 ̸ 𝑍𝑚 , ε

𝜓𝑚↦𝜗
𝑀𝑚

(𝑁)↖ or ε𝜓𝑚↦𝜗
𝑀𝑚

(𝑁)↑ς 𝑃(𝑁). The class P

is ϖ0
1(𝑂), so by the cone avoidance basis theorem (Theorem 3.2.6),

there is some 𝑍 ↘ P such that 𝑃 ⊋𝑆 𝑂 ↔ 𝑍. Since 𝑂 is infinite, there is
some 𝑚 < 2 such that 𝑂 ̸ 𝑍𝑚 is infinite. The condition (𝜓0 , 𝜓1 ,𝑂 ̸ 𝑍𝑚)
is an extension of 𝑕 forcing ε𝐿𝑚

𝑀𝑚
(𝑁)↖ ↙ε𝐿𝑚

𝑀𝑚
(𝑁)↑ς 𝑃(𝑁).

⫅̸ Case 3: None of Case 1 and Case 2 holds. Then 𝑉 is a ω0
1(𝑂) graph

of the characteristic function of 𝑃, hence 𝑃 is 𝑂-computable. This
contradicts our hypothesis.

We are now ready to prove Theorem 3.4.6. Let Fbe a su"ciently generic filter
for this notion of forcing, and for each 𝑚 < 2, let 𝐿𝑚 = 𝐿F,𝑚 . By Lemma 3.4.7,
both sets are infinite. Moreover, by Lemma 3.4.8, either 𝑃 ⊋𝑆 𝐿0 or 𝑃 ⊋𝑆 𝐿1.
Letting 𝑘 be this set, it satisfies the statement of Theorem 3.4.6.

One can formulate the proof of Theorem 3.4.6 in terms of forcing question,
with the appropriate disjunctive definition.

Definition 3.4.9. Given a disjunctive notion of forcing (ℙ,⇔) and a family
of formulas φ, a forcing question is a relation ?∀ : ℙ ∞ φ such that, for
every 𝑕 ↘ ℙ and every pair of formulas 𝜕0(𝐿), 𝜕1(𝐿) ↘ φ, Note that if 𝑕 ?⫌𝜕0(𝐿0)↙𝜕1(𝐿1), one does

not force ¬𝜕0(𝐿0)ℑ¬𝜕1(𝐿1), but their dis-
junction.1. If 𝑕 ?∀𝜕0(𝐿0) ↙ 𝜕1(𝐿1), then there is an extension 𝑖 ⇔ 𝑕 forc-

ing 𝜕𝑚(𝐿𝑚) for some 𝑚 < 2 ;
2. If 𝑕 ?⫌𝜕0(𝐿0) ↙ 𝜕1(𝐿1), then there is an extension 𝑖 ⇔ 𝑕 forc-

ing ¬𝜕𝑚(𝐿𝑚) for some 𝑚 < 2. ↗

Exercise 3.4.10. Fix a non-computable set 𝑃, a set 𝑌, and consider the
notion of forcing of Theorem 3.4.6. Given a condition 𝑕 = (𝜓0 , 𝜓1 ,𝑂) and two
ω0

1 formulas 𝜕0(𝐿), 𝜕1(𝐿), define 𝑕 ?∀𝜕0(𝐿0) ↙ 𝜕1(𝐿1) to hold if for every
2-partition 𝑄0 ℜ𝑄1 = 𝑂, there is some 𝑚 < 2 and a finite set 𝜗 ∝ 𝑄𝑚 such that
𝜕(𝜓𝑚 ↦ 𝜗) holds.

1. Show that the relation 𝑕 ?∀𝜕0(𝐿0) ↙ 𝜕1(𝐿1) is ω0
1(𝑂).

2. Prove that it is a forcing question in the sense of Definition 3.4.9. 𝜒

We now have all the necessary ingredients to prove Seetapun’s theorem.

Theorem 3.4.11 (Seetapun [10])
Let 𝑃 be a non-computable set. For every computable coloring 𝑋 : [ℕ]2 ⇓
ℕ, there is an infinite 𝑋 -homogeneous set 𝑘 such that 𝑃 ⊋𝑆 𝑘.

30 3 Cone avoidance

P!""#. The proof follows the one of Theorem 3.4.1, using cone avoidance of
COH (Theorem 3.4.2) and strong cone avoidance of RT1

2 (Theorem 3.4.6).

Fix 𝑃 and 𝑋 . Let ∃𝑙 = 𝑙0 , 𝑙1 , . . . be the computable sequence of sets defined
for every 𝑁 ↘ ℕ by 𝑙𝑁 = {𝑎 ↘ ℕ : 𝑋 (𝑁 , 𝑎) = 1}. By Theorem 3.4.2, there
is an infinite ∃𝑙-cohesive set 𝑂 ∝ ℕ such that 𝑃 ⊋𝑆 𝑂. In particular, for
every 𝑁 ↘ 𝑂, lim𝑎↘𝑂 𝑋 (𝑁 , 𝑎) exists. Let 𝑋 : 𝑂 ⇓ 2 be the limit coloring
of 𝑋 , that is, 𝑋 (𝑁) = lim𝑎↘𝑂 𝑋 (𝑁 , 𝑎). By Theorem 3.4.6, there is an infinite
𝑋 -homogeneous set 𝑅 ∝ 𝑂 for some color 𝑚 < 2 such that 𝑃 ⊋𝑆 𝑅 ↔ 𝑂.
Since for every 𝑁 ↘ 𝑅, lim𝑎↘𝑅 𝑋 (𝑁 , 𝑎) = 𝑚, one can thin out the set 𝑅 to obtain
an infinite 𝑋 -homogeneous subset 𝑘 ∝ 𝑅.

The original proof of Seetapun’s theorem [10] was more direct, using a notion
of forcing to build homogeneous sets for colorings of pairs. We leave it as an
exercise.

Exercise 3.4.12 (Seetapun and Slaman [10]). Fix a computable coloring 𝑋 :
[ℕ]2 ⇓ 2 and a non-computable set 𝑃. Consider the notion of forcing whose
conditions18

18: One can apply the same trick as in
Theorem 3.4.6 to see that one of the ini-
tial segments is extendible. Given a condi-
tion (𝜓0 , 𝜓1 ,𝑂), apply Ramsey’s theorem
for pairs to 𝑋 ⫋[𝑂]2 to obtain an infinite 𝑋 -
homogeneous subset 𝑘 ∝ 𝑂 for some
color 𝑚 < 2. The properties of the condi-
tion are designed to ensure that 𝜓𝑚 ↦ 𝑘 is
𝑋 -homogeneous.

are 3-tuples (𝜓0 , 𝜓1 ,𝑂) such that for every 𝑚 < 2,

1. (𝜓𝑚 ,𝑂) is a Mathias condition ;
2. For every 𝑁 ↘ 𝑂, 𝜓𝑚 ↦ {𝑁} is 𝑋 -homogeneous for color 𝑚 ;
3. 𝑃 ⊋𝑆 𝑂.

The extension relation is the same as in the proof of Theorem 3.4.6. Given
a condition 𝑕 = (𝜓0 , 𝜓1 ,𝑂) and two ω0

1 formulas 𝜕0(𝐿) and 𝜕1(𝐿), let
𝑕 ?∀𝜕0(𝐿0)↙𝜕1(𝐿1) i! for every 2-partition 𝑄0ℜ𝑄1 = 𝑂, there is some 𝑚 < 2
and a finite 𝑋 -homogeneous set 𝜗 ∝ 𝑄𝑚 for color 𝑚 such that 𝜕𝑚(𝜓𝑚 ↦ 𝜗)
holds.19

19: Notice the strong similarity of this forc-
ing question with the one in Theorem 3.4.6.
The only di!erence is that one requires 𝜗 to
be 𝑋 -homogeneous as well. 20

20: If the coloring 𝑋 is stable, that is,
lim𝑎 𝑋 (𝑁 , 𝑎) always exists, then the inter-
pretation of the 2-partition 𝑄0 ℜ 𝑄1 = 𝑂 is
clear: it is the limit coloring of 𝑋 . This forc-
ing question might be more confusing in the
general case, since 𝑋 has no limit behav-
ior. This is where compactness comes into
play: find a bound to quantify over finite 2-
partitions, then “stabilize” the behavior of 𝑋
over this finite initial segment, by thinning
out the remaining reservoir. This limit be-
havior induces a 2-partition of the initial seg-
ment.

1. Prove that the relation 𝑕 ?∀𝜕0(𝐿0) ↙ 𝜕1(𝐿1) is ω0
1(𝑂).

2. Show that it is a forcing question in the sense of Definition 3.4.9.
3. Prove Seetapun’s theorem using this notion of forcing. 𝜒

It is sometimes useful to think of instances of COH as countably many instances
of RT1

2, where a solution is an infinite set which is simultaneously homogeneous
for all instances of RT1

2, up to finite changes. With this intuition in mind, one
can strengthen Theorem 3.4.2 to prove that it holds even when considering
arbitrary instances of COH.

Exercise 3.4.13 (Wang [15]). Fix a non-computable set 𝑃 and an arbitrary
countable sequence ∃𝑙 = 𝑙0 , 𝑙1 , . . . of sets, with no e!ectiveness restriction
whatsoever. Consider the variant of Mathias forcing, whose conditions2121: Note that contrary to the proof of cone

avoidance of COH, one needs to use Math-
ias conditions (𝜓,𝑂) where 𝑃 ⊋𝑆 𝑂 in-
stead of computable Mathias conditions.

are
pairs (𝜓,𝑂) where 𝑃 ⊋𝑆 𝑂.

1. Use Theorem 3.4.6 to show that the set D𝑇 = {(𝜓,𝑂) : 𝑂 ∝ 𝑙𝑇 ↙𝑂 ∝
𝑙𝑇} is dense.

2. Deduce the existence of an infinite ∃𝑙-cohesive set 𝐿 such that 𝑃 ⊋𝑆 𝐿.
𝜒

Cone avoidance fails when considering computable colorings of 3-tuples. The
reason is that one can create computable coloring 𝑋 : [ℕ]3 ⇓ 2 such that
every infinite homogeneous set 𝑘 is so sparse, that its principal function
𝑕𝑘 is very fast-growing, and dominates the modulus of ↓→. Recall that the
principal function 𝑕𝑂 of an infinite set 𝑂 = {𝑁0 < 𝑁1 < . . . } is defined by
𝑕𝑂(𝑇) = 𝑁𝑇 .

3.5 Preserving definitions 31

22: The proof of preservation of non-ω0
1 def-

initions is simpler and arguably more natural
than the one of cone avoidance. This nat-
urality comes from the fact that, in some
sense, ω0

1 sets are more natural than com-
putable ones, as they form a syntactic family
and thus have a better behavior.

Exercise 3.4.14 (Jockusch [16]).

1. Show that for every function 𝑏 : ℕ ⇓ ℕ, there is a 𝑏-computable
coloring 𝑋 : [ℕ]2 ⇓ 2 such that for every infinite 𝑋 -homogeneous
set 𝑘, the principal function 𝑕𝑘 dominates 𝑏.

2. Show that for every ↓→-computable coloring 𝑋 : [ℕ]2 ⇓ 2, there is a com-
putable coloring 𝑑 : [ℕ]3 ⇓ 2 such that every infinite 𝑑-homogeneous
set is 𝑋 -homogeneous.

3. Deduce the existence of a computable coloring 𝑑 : [ℕ]3 ⇓ 2 such that
every infinite 𝑑-homogeneous set computes ↓→. 𝜒

One can actually go one step further, and construct a computable coloring
𝑋 : [ℕ]3 ⇓ 2 such that every infinite homogeneous set is of PA degree
over ↓→.

Exercise 3.4.15 (Hirschfeldt and Jockusch [17]).
A set 𝑛 ∝ ℕ is pre-homogeneous for a coloring 𝑋 : [ℕ]𝑇+1 ⇓ 2 if for
every 𝑗 ↘ [𝑛]𝑇 and every 𝑁 , 𝑎 ↘ 𝑛 with max 𝑗 < 𝑁 , 𝑎, then 𝑋 (𝑗 ↦ {𝑁}) =
𝑋 (𝑗 ↦ {𝑎}). Construct a computable coloring 𝑋 : [ℕ]3 ⇓ 2 such that every
infinite pre-homogeneous set is of PA degree over ↓→. 𝜒

3.5 Preserving definitions

The existence of a notion of forcing with a ω0
1-preserving forcing question

enables to prove abstractly some stronger weakness properties, such as
preservation of one non-ω0

1 definition. Some sets such as ↓→ can be used to
“simplify” the definition of other sets in the arithmetic hierarchy. For example,
any ω0

2 set is ω0
1(↓→). The notion of preservation of 1 non-ω0

1-definition reflects
the unability of a problem to simplify the description of a non-ω0

1 set to make it
ω0

1 relative to a solution.

Definition 3.5.1. A problem P admits preservation of 1 non-ω0
1 definition if

for every set 𝑄 and every non-ω0
1(𝑄) set 𝑃, every 𝑄-computable instance 𝑂

of P admits a solution 𝑅 such that 𝑃 is not ω0
1(𝑄 ↔ 𝑅). ↗

Thanks to Post’s theorem, preservation of 1 non-ω0
1 definition implies cone

avoidance:

Exercise 3.5.2. Prove that if a problem P admits preservation of 1 non-ω0
1

definition, then it admits cone avoidance. 𝜒

The proof of Theorem 3.3.4 can be strengthened to prove an abstract theorem
about preservation of 1 non-ω0

1 definition.22

Theorem 3.5.3
Let (ℙ,⇔) be a notion of forcing with a ω0

1-preserving forcing question. For
every non-ω0

1 set 𝑃 and every su!ciently generic filter F, 𝑃 is not ω0
1(𝐿F).

P!""#. It su"ces to prove the following lemma:

Lemma 3.5.4. For every condition 𝑕 ↘ ℙ and every Turing index 𝑀, there is
an extension 𝑖 ⇔ 𝑕 forcing 𝑃 ς 𝑞

𝐿

𝑀
. 𝜒

32 3 Cone avoidance

23: The proof of Exercise 3.5.2 also holds
when considering non-relativized versions
of cone avoidance of preservation of 1 non-
ω0

1 definitions. On the other hand, the re-
verse direction uses a di!erent set 𝑄. One
can construct artificial problems which admit
non-relativized cone avoidance but not non-
relativized preservation of 1 non-definition.

P!""#. Consider the following set

𝑉 = {𝑁 ↘ ℕ : 𝑕 ?∀ 𝑁 ↘ 𝑞
𝐿

𝑀
}

Since the forcing question is ω0
1-preserving, the set 𝑉 is ω0

1. There are three
cases:

⫅̸ Case 1: there is some 𝑁 ↘ 𝑉 \𝑃. By Property (1) of the forcing question,
there is an extension 𝑖 ⇔ 𝑕 forcing 𝑁 ↘ 𝑞

𝐿

𝑀
.

⫅̸ Case 2: there is some 𝑁 ↘ 𝑃 \𝑉 . By Property (2) of the forcing question,
there is an extension 𝑖 ⇔ 𝑕 forcing 𝑁 ϱ 𝑞

𝐿

𝑀
.

⫅̸ Case 3: 𝑉 = 𝑃. Then 𝑃 is ω0
1, contradiction.

In the first two cases, the extension 𝑖 forces 𝑞𝐿

𝑀
ς 𝑃.

We are now ready to prove Theorem 3.5.3. Given 𝑀 ↘ ℕ, let D𝑀 be the set of
all conditions 𝑖 ↘ ℙ forcing 𝑞

𝐿

𝑀
ς 𝑃. It follows from Lemma 3.5.4 that every

D𝑀 is dense, hence every su"ciently generic filter F is {D𝑀 : 𝑀 ↘ ℕ}-generic,
so 𝑃 is not ω0

1(𝐿F). This completes the proof of Theorem 3.5.3.

It follows from Theorem 3.5.3 that the proofs of cone avoidance for Cohen
genericity and ϖ0

1 classes have a straightforward adaptation to prove preser-
vation of 1 non-ω0

1 definition. We leave these adaptations as an exercise:

Exercise 3.5.5. Let 𝑃 be a non-ω0
1 set. Prove that for every su"ciently Cohen

generic set 𝐿, 𝑃 is not ω0
1(𝐿). 𝜒

Exercise 3.5.6. Let 𝑃 be a non-ω0
1 set. Prove that for every non-empty ϖ0

1
class P ∝ 2ℕ , there is a member 𝐿 ↘ P such that 𝑃 is not ω0

1(𝐿). 𝜒

It is natural to wonder whether some problems admit cone avoidance but not
preservation of 1 non-ω0

1 definition. Actually, this happens not to be the case,
thanks to the relativized formulation of both notions.23

Theorem 3.5.7 (Downey et al. [18])
Let 𝑃 be a non-ω0

1 set. There is a set 𝑄 and a set 𝑟 ⊋𝑆 𝑄 such that for
every set 𝐿 such that 𝑃 is ω0

1(𝐿 ↔ 𝑄), 𝑟 ⇔𝑆 𝐿 ↔ 𝑄.

The proof of Theorem 3.5.7 is quite technical and outside the scope of this
book.

Corollary 3.5.8 (Downey et al. [18])
A problem P admits preservation of 1 non-ω0

1 definition i" it admits cone
avoidance.2424: Given the simplicity of the forward direc-

tion, the technicality of the reciprocal, and
the naturality of the proof of preservation of
1 non-ω0

1 definition using a ω0
1-preserving

forcing question, it is preferable to directly
prove preservation of 1 non-ω0

1 definition
when the result is needed.

P!""#. The forward direction is Exercise 3.5.2. Let us prove reciprocal. Sup-
pose P admits cone avoidance. Fix a set 𝑄 and a non-ω0

1(𝑄) set 𝑃 and let
𝑂 ⇔𝑆 𝑄 be an instance of P. By Theorem 3.5.7 relativized to 𝑄, there is
a set 𝑄1 and a set 𝑟 ⊋𝑆 𝑄 ↔ 𝑄1 such that for every set 𝐿 such that 𝑃 is
ω0

1(𝐿 ↔ 𝑄 ↔ 𝑄1), 𝑟 ⇔𝑆 𝐿 ↔ 𝑄 ↔ 𝑄1. By cone avoidance of P relativized
to 𝑄 ↔ 𝑄1, there is a solution 𝑅 to 𝑂 such that 𝑟 ⊋𝑆 𝑅 ↔ 𝑄 ↔ 𝑄1. By choice
of 𝑄1 and 𝑟, it follows that 𝑃 is not ω0

1(𝑅 ↔ 𝑄 ↔ 𝑄1). In particular, 𝑃 is not
ω0

1(𝑅 ↔ 𝑄).

3.6 Preserving hyperimmunities 33

3.6 Preserving hyperimmunities

There exists a well-known duality between computing sets and computing
fast-growing functions. The simplest example is the correspondence between
the halting set ↓→, and the halting time function 𝜘↓→ : ℕ ⇓ ℕ which to 𝑀

associates the smallest time 𝑠 such that ε𝑀(𝑀)[𝑠]↑, if it exists, and equals 0
otherwise. The function 𝜘 is ↓→-computable, and every function dominating 𝜘↓→
computes ↓→. More generally, a function 𝑋 : ℕ ⇓ ℕ is a modulus of a set 𝑂 if
every function dominating 𝑋 computes 𝑂. If furthermore 𝑋 is 𝑂-computable,
then it is a self-modulus. By Solovay [19], the sets admitting a modulus are
exactly the ϑ1

1 sets, or equivalently the hyperarithmetic sets. On the other hand,
there exist ϑ0

3 sets with no self-modulus.

Proposition 3.6.1 (Martin and Miller [20]). Everyϑ0
2 set admits a self-modu-

lus. 𝜒

P!""#. Let 𝑌 be aϑ0
2 set, withϑ0

2 approximation 𝑌0 ,𝑌1 , . . . The computation
function 𝑡𝑌 : ℕ ⇓ ℕ maps 𝑁 to the smaller integer 𝑇 △ 𝑁 such that 𝑌𝑇⫋𝑁 =
𝑌⫋

𝑁
. Let 𝑋 be a function dominating 𝑡𝑌. Let 𝑑(𝑁) be the largest 𝑎 ⇔ 𝑁 such that

for all 𝑁 ⇔ 𝑠 ⇔ 𝑋 (𝑁), 𝑌𝑠⫋𝑎 = 𝑌
𝑋 (𝑁)⫋𝑎 . The function 𝑑 is total 𝑋 -computable.

Moreover, 𝑑 tends towards+⊤, because the approximation of 𝑌 beingϑ0
2, it will

stabilize on increasingly larger initial segments. Finally, as 𝑁 ⇔ 𝑡𝑌(𝑁) ⇔ 𝑋 (𝑁),
then if 𝑑(𝑁) = 𝑎, 𝑌𝑁⫋𝑎 = 𝑌

𝑡𝑌(𝑁)⫋𝑎 = 𝑌⫋
𝑎
. Then, to decide if 𝑇 ↘ 𝑌, it

su"ces to find an integer 𝑁 such that 𝑑(𝑁) > 𝑇, then test if 𝑇 ↘ 𝑌𝑁 . This
procedure is 𝑋 -computable.

Recall that a function 𝑋 : ℕ ⇓ ℕ is hyperimmune if it is not dominated by
any computable function. In particular, if a function 𝑋 is a modulus of a non-
computable set 𝑃, then it is hyperimmune. Moreover, if it is a self-modulus,
then avoiding the cone above 𝑃 is equivalent to preserving the hyperimmunity
of the function 𝑋 . This motivates the following definition:

Definition 3.6.2. A problem P admits preservation of 1 hyperimmunity if
for every set 𝑄 and every 𝑄-hyperimmune function 𝑋 , every 𝑄-computable
instance 𝑂 of P admits a solution 𝑅 such that 𝑋 is 𝑄 ↔ 𝑅-hyperimmune. ↗

At first sight, the sole existence of a ω0
1-preserving forcing question does not

seem to be su"cient to prove preservation of 1 hyperimmunity. One furthermore
needs the forcing question to satisfy some kind of compactness as follows:

Definition 3.6.3. Given a notion of forcing (ℙ,⇔), a forcing question is ω0
𝑇
-

compact if for every 𝑕 ↘ ℙ and every ω0
𝑇

formula 𝜕(𝐿, 𝑁), if 𝑕 ?∀ ⇐𝑁𝜕(𝐿, 𝑁)
holds, then there is a finite set 𝑗 ∝ ℕ such that 𝑕 ?∀ ⇐𝑁 ↘ 𝑗 𝜕(𝐿, 𝑁). ↗

All the forcing questions seen in this chapter are ω0
1-compact. Thanks to this

compactness property, one can prove preservation of 1 hyperimmunity.

Theorem 3.6.4
Let (ℙ,⇔) be a notion of forcing with a ω0

1-compact, ω0
1-preserving forcing

question. For every hyperimmune function 𝑋 : ℕ ⇓ ℕ and every su!ciently
generic filter F, 𝑋 is 𝐿F-hyperimmune.

P!""#. It su"ces to prove the following lemma:

34 3 Cone avoidance

Lemma 3.6.5. For every condition 𝑕 ↘ ℙ and every Turing index 𝑀, there is
an extension 𝑖 ⇔ 𝑕 forcing ε𝐿

𝑀
not to dominate 𝑋 .2525: By this, we mean forcing eitherε𝐿

𝑀
to be

partial, or ε𝐿

𝑀
(𝑁) < 𝑋 (𝑁) for some 𝑁 ↘ ℕ.

𝜒

P!""#. Suppose first that 𝑕 ?⫌⇐𝑊ε𝐿

𝑀
(𝑁) ↑= 𝑊 for some 𝑁 ↘ ℕ. Then by

Property (2) of the forcing question, there is an extension 𝑖 ⇔ 𝑕 forcingε𝐿

𝑀
(𝑁)↖,

and we are done. Suppose now that for every 𝑁 ↘ ℕ, 𝑕 ?∀ ⇐𝑊ε𝐿

𝑀
(𝑁)↑= 𝑊.

By ω0
1-compactness of the forcing question, for every 𝑁 ↘ ℕ, there is a finite

set 𝑗𝑁 ∝ ℕ such that 𝑕 ?∀ ⇐𝑊 ↘ 𝑗𝑁 ε𝐿

𝑀
(𝑁)↑= 𝑊. Let 𝑑 : ℕ ⇓ ℕ be the function

which on input 𝑁, looks for some finite set 𝑗𝑁 such that 𝑕 ?∀ ⇐𝑊 ↘ 𝑗𝑁 ε𝐿

𝑀
(𝑁)↑=

𝑊 and outputs max 𝑗𝑁 . Such a function is total by hypothesis, and computable
by ω0

1-preservation of the forcing question. Since 𝑋 is hyperimmune, 𝑑(𝑁) <
𝑋 (𝑁) for some 𝑁 ↘ ℕ. By Property (1) of the forcing question, there is an
extension 𝑖 ⇔ 𝑕 forcing ⇐𝑊 ↘ 𝑗𝑁ε𝐿

𝑀
(𝑁)↑= 𝑊. Since 𝑋 (𝑁) > max 𝑗𝑁 , 𝑖 forces

ε𝐿

𝑀
(𝑁)↑< 𝑋 (𝑁).

We are now ready to prove Theorem 3.6.4. Given 𝑀 ↘ ℕ, let D𝑀 be the
set of all conditions 𝑖 ↘ ℙ forcing ε𝐿

𝑀
not to dominate 𝑋 . It follows from

Lemma 3.5.4 that every D𝑀 is dense, hence every su"ciently generic filter F
is {D𝑀 : 𝑀 ↘ ℕ}-generic, so 𝑋 is 𝐿F-hyperimmune. This completes the proof
of Theorem 3.6.4.

Contrary to preservation of 1 non-ω0
1 definition, there is no immediate link

between preservation of 1 hyperimmunity and cone avoidance. Furthermore,
preservation of 1 hyperimmunity seems to require an extra property which
may not always be satisfied. However, the two notions turn out again to be
equivalent in their relativized form. Recall Theorem 3.2.4 which informally says
that every set can become ϑ0

2 while avoiding a cone.

Theorem 3.6.6 (Downey et al. [18])
If a problem P admits preservation of 1 hyperimmunity, then it admits cone
avoidance.

P!""#. Fix a set 𝑄, a set 𝑃 ⊋𝑆 𝑄 and an instance 𝑂 ⇔𝑆 𝑄 of P. By Theo-
rem 3.2.4, there is a set 𝑄1 such that 𝑃 ⊋𝑆 𝑄 ↔ 𝑄1 and 𝑃 ⇔𝑆 (𝑄 ↔ 𝑄1)→. By
Proposition 3.6.1 relative to 𝑄↔𝑄1, there is a 𝑃↔𝑄↔𝑄1-computable function
𝑋 : ℕ ⇓ ℕ such that for every function 𝑏 dominating 𝑋 , 𝑃 ⇔𝑆 𝑏 ↔ 𝑄 ↔ 𝑄1. In
particular, 𝑋 is 𝑄 ↔ 𝑄1-hyperimmune. Since P admits preservation of 1 hyper-
immunity, there is a solution 𝑅 to 𝑂 such that 𝑋 is 𝑅 ↔ 𝑄 ↔ 𝑄1-hyperimmune.
It follows that 𝑃 ⊋𝑆 𝑅 ↔ 𝑄 ↔ 𝑄1.

The reverse direction also holds, using the following theorem which says that
every non-decreasing hyperimmune function is a modulus of some set in a
relativized setting.

Theorem 3.6.7 (Downey et al. [18])
Fix a non-decreasing hyperimmune function 𝑋 : ℕ ⇓ ℕ. There is a set 𝑄
and a set 𝑃 ⊋𝑆 𝑄 ↔ 𝐿 such that 𝑋 is a 𝑄-modulus for 𝑃.

Here again, the proof of Theorem 3.6.7 is out of the scope of this book.

3.6 Preserving hyperimmunities 35

Corollary 3.6.8 (Downey et al. [18])
A problem P admits preservation of 1 hyperimmunity i" it admits cone
avoidance.

P!""#. The forward direction is Theorem 3.6.6. Let us prove reciprocal. Sup-
pose P admits cone avoidance. Fix a set 𝑄, a 𝑄-hyperimmune function 𝑋 :
ℕ ⇓ ℕ, and let 𝑂 ⇔𝑆 𝑄 be an instance of P. By Theorem 3.6.7 relativized
to 𝑄, there is a set 𝑄1 and a set 𝑃 ⊋𝑆 𝑄 ↔ 𝑄1 such that 𝑋 is a 𝑄-modulus
for 𝑃. By cone avoidance of P relativized to 𝑄 ↔ 𝑄1, there is a solution 𝑅

to 𝑂 such that 𝑃 ⊋𝑆 𝑅 ↔ 𝑄 ↔ 𝑄1. By choice of 𝑄1 and 𝑃, it follows that 𝑋 is
𝑅 ↔ 𝑄 ↔ 𝑄1-hyperimmune. In particular, 𝑋 is not 𝑅 ↔ 𝑄-hyperimmune.

