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Turing degrees. Many natural computational
phenomena are better expressed as fami-
lies of Turing degrees rather than individual
degrees.
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Prerequisites: Chapters 2 and 3

Compactness arguments form a central tool in mathematics in general and
in topology in particular. From a reverse mathematical viewpoint, many or-
dinary theorems are equivalent to the Heine-Borel compactness theorem.
Some other theorems contain weaker compactness arguments, and some are
compactness-free. In this chapter, we study various levels of compactness,
namely, weak König’s lemma (PA degrees), weak weak König’s lemma (ran-
dom degrees), DNC degrees, and a Ramsey-type weak König’s lemma. For
the three former notions, we develop the tools to prove that some theorems
lack compactness.

This chapter pushes further the correspondence between computability-theoretic
features of a generic set and the existence of a forcing question with appropriate
definability and combinatorial features. In particular, PA and DNC avoidance
both result from the existence of a forcing question with the ability to find
simultaneous answers to independent questions.

5.1 PA avoidance

PA degrees are one of the most important notions in computability-theory,
both from a conceptual and a technical perspective. In particular, they form a
natural Muchnik degree1 of intermediate strength between 0 and 0→. In reverse
mathematics, the existence of PA degrees is equivalent to the system WKL0,
which informally corresponds to compactness arguments. Many theorems,
such as the Heine-Borel compactness theorem, or Gödel’s completeness
theorem, are equivalent to WKL0. Thus, the notion of PA avoidance is not only
a technical tool to separate a theorem from WKL0 in reverse mathematics, but
it also reflects the lack of compactness in the proof of the theorem, which is an
interesting result in its own right.

Definition 5.1.1. A problem P admits PA avoidance2 2: Here again, the unrelativized formulation
with 𝐿 = 𝑀 = ↑ is far more natural, but
does not behave well with artificial prob-
lems.

if for every pair of
sets 𝐿 and 𝑀 ↓𝑁 𝐿 such that 𝐿 is not of PA degree over 𝑀, every 𝐿-
computable instance 𝑂 of P admits a solution 𝑃 such that 𝑃 ↔ 𝐿 is not of
PA degree over 𝑀. ↗

Recall that a Scott ideal is a Turing ideal Msuch that for every 𝑂 ↘ M, there is
a set 𝑃 ↘ M of PA degree over 𝑂. Equivalently, a Scott ideal is a Turing ideal
such that for every infinite binary tree 𝑁 ↘ M, there is an infinite path 𝑄 ↘ [𝑁]
in M. In reverse mathematics, Turing ideals and Scott ideals are exactly the
second-order parts of 𝜑-models of RCA0 and WKL0, respectively.

Exercise 5.1.2. Let P be a ω1
2 problem which admits PA avoidance. Show

the existence of an 𝜑-model of RCA0 + P which does not contain any set of
PA degree. 𝜒

Let us start with a concrete example of a proof of PA avoidance. As usual,
Cohen forcing is the best behaving notion of forcing, as its partial order is
computable. In all our proofs of PA avoidance, we shall use {0, 1}-valued DNC
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3: Notice that this set is the same as in
Lemma 3.2.2.

4: Note that we exploit the assumption that
the functionals are {0, 1}-valued to force di-
vergence. Indeed, the contradiction comes
from the fact that 𝑅 ↘ {0, 1}.

functions. Recall that a function 𝑆 : ℕ ≃ ℕ is diagonally non-computable
(DNC) if for every 𝑇 ↘ ℕ, 𝑆 (𝑇) ε ϑ𝑇(𝑇). A degree is PA i! it computes a
{0, 1}-valued DNC function.

Theorem 5.1.3
For every su!ciently Cohen generic set 𝑈, 𝑈 is not of PA degree.

P!""#. It su"ces to prove the following lemma, where “ϑ𝑈

𝑇
is not a DNC2

function” is a shorthand for ⇐𝑉ϑ𝑈

𝑇
(𝑉)⇒ ⇑⇐𝑉ϑ𝑈

𝑇
(𝑉)⇓= ϑ𝑉(𝑉). We shall assume

as usual that every Turing functional is {0, 1}-valued.

Lemma 5.1.4. For every condition 𝜓 ↘ 2<ℕ and every Turing index 𝑇 ↘ ℕ,
there is an extension 𝜔 ⇔ 𝜓 forcing ϑ𝑈

𝑇
not to be a DNC2 function. 𝜒

P!""#. Fix a condition 𝜓. Consider the following set3

𝑊 = {(𝑉 , 𝑅) ↘ ℕ ↖ 2 : ⇐𝜔 ⇔ 𝜓 ϑ𝜔
𝑇
(𝑉)⇓= 𝑅}

Note that the set 𝑊 is ϖ0
1. There are three cases:

⊋ Case 1: (𝑉 ,ϑ𝑉(𝑉)) ↘ 𝑊 for some 𝑉 ↘ ℕ such that ϑ𝑉(𝑉)⇓. Let 𝜔 ⇔ 𝜓
witness (𝑉 ,ϑ𝑉(𝑉)) ↘ 𝑊 , that is, let 𝜔 ⇔ 𝜓 be such that ϑ𝜔

𝑇
(𝑉)⇓= ϑ𝑉(𝑉).

Then 𝜔 forces ϑ𝑈

𝑇
not to be a DNC2 function.

⊋ Case 2: (𝑉 , 0), (𝑉 , 1) ϱ 𝑊 for some 𝑉 ↘ ℕ. We claim that 𝜓 already
forces ϑ𝑈

𝑇
(𝑉)⇒.4 Indeed, if for some 𝐿 ↘ [𝜓], ϑ𝐿

𝑇
(𝑉)⇓, then by the use

property, there is some 𝜔 ↙ 𝐿 such that ϑ𝜔
𝑇
(𝑉)⇓, and by choosing 𝜔

long enough, it would witness (𝑉 , 𝑅) ↘ 𝑊 for 𝑅 = ϑ𝜔
𝑇
(𝑉), contradiction.

⊋ Case 3: None of Case 1 and Case 2 holds. Then 𝑊 is a ϖ0
1 graph of a

{0, 1}-valued DNC function. This contradicts the fact that the degree 0
is not PA.

We are now ready to prove Theorem 5.1.3. Given 𝑇 ↘ ℕ, let D𝑇 be the set of all
conditions 𝜔 forcing ϑ𝑈

𝑇
not to be a DNC2 function. It follows from Lemma 5.1.4

that every D𝑇 is dense, hence for every {D𝑇 : 𝑇 ↘ ℕ}-generic set 𝑈, 𝑈 is not
of PA degree.

Exercise 5.1.5. Adapt the proof of Theorem 3.2.4 to show that for any set 𝑋,
there exists a set 𝑈 such that 𝑈→ ∝𝑁 𝑋 and 𝑈 is not of PA degree. 𝜒

On the other hand, one cannot adapt the proof of Theorem 3.2.6 to show that
WKL admits PA avoidance. Indeed, the class of {0, 1}-valued DNC functions
is ω0

1.

Exercise 5.1.6. Try to adapt the proof of Theorem 3.2.6 to show that any
non-empty ω0

1 class admits a member of non-PA degree. Identify the point of
failure. 𝜒

The main structural di!erence between the cone avoidance proof of Theo-
rem 3.2.1 and the PA avoidance proof of Theorem 5.1.3 is in Case 2: Assuming
the forcing question gives a negative answer independently to 𝑌 ?′ϑ𝑈

𝑇
(𝑉)⇓= 0

and 𝑌 ?′ϑ𝑈

𝑇
(𝑉)⇓= 1, we use the existence of a single extension (which in

the proof of Theorem 5.1.3 is 𝑌 itself) forcing simultaneously ¬(ϑ𝑈

𝑇
(𝑉)⇓= 0)

and ¬(ϑ𝑈

𝑇
(𝑉)⇓= 1). Assuming the functional is {0, 1}-valued, then the ex-

tension forces divergence. This ability to give a single extension witnessing
simultaneously two independent negative answers is the core feature of PA
avoidance.
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Definition 5.1.7. Given a notion of forcing (ℙ,↓) and a family of formulas ς,
a forcing question is ς-merging if for every 𝑌 ↘ ℙ and every pair of ς-
formulas 𝜕0(𝑈), 𝜕1(𝑈), if 𝑌 ?′𝜕0(𝑈) and 𝑌 ?′𝜕1(𝑈) both hold, then there
is an extension 𝑍 ↓ 𝑌 forcing 𝜕0(𝑈) ∞ 𝜕1(𝑈). ↗

Note that a forcing question for ϖ0
𝑎

formulas induces a forcing question for ω0
𝑎

formulas by considering the complement. Thus, by extension, we say that a
forcing question for ϖ0

𝑎
formulas is ω0

𝑎
-merging if, whenever 𝑌 ?⫅̸𝜕0(𝑈) and

𝑌 ?⫅̸𝜕1(𝑈), there is an extension forcing ¬𝜕0(𝑈) ∞ ¬𝜕1(𝑈).

Remark 5.1.8. In Figure 3.1, the forcing questions at the left-most position
are ϖ0

1-merging, and the ones at the right-most position are ω0
1-merging. We

shall see examples of ω0
1 forcing questions at intermediary positions. 𝜒

We have the necessary ingredients to prove our abstract theorem on PA
avoidance.

Theorem 5.1.9
Let (ℙ,↓) be a notion of forcing with a ϖ0

1-preserving ω0
1-merging forcing

question. For every su!ciently generic filter F, 𝑈F is not of PA degree.

P!""#. It su"ces to prove the following lemma:

Lemma 5.1.10. For every condition 𝑌 ↘ ℙ and every Turing index 𝑇 ↘ ℕ,
there is an extension 𝑍 ↓ 𝑌 forcing ϑ𝑈

𝑇
not to be a DNC2 function. 𝜒

P!""#. Consider the following set

𝑊 = {(𝑉 , 𝑅) ↘ ℕ ↖ 2 : 𝑌 ?′ϑ𝑈

𝑇
(𝑉)⇓= 𝑅}

Since the forcing question is ϖ0
1-preserving, the set 𝑊 is ϖ0

1. There are three
cases:

⊋ Case 1: (𝑉 ,ϑ𝑉(𝑉)) ↘ 𝑊 for some 𝑉 ↘ ℕ such that ϑ𝑉(𝑉)⇓. By Property
(1) of the forcing question, there is an extension 𝑍 ↓ 𝑌 forcing ϑ𝑈

𝑇
(𝑉)⇓=

ϑ𝑉(𝑉).
⊋ Case 2: (𝑉 , 0), (𝑉 , 1) ϱ 𝑊 for some 𝑉 ↘ ℕ. Since the forcing question

is ω0
1-merging, there is an extension 𝑍 ↓ 𝑌 forcing ¬(ϑ𝑈

𝑇
(𝑉)⇓= 0) ∞

¬(ϑ𝑈

𝑇
(𝑉)⇓= 1), hence forcing ϑ𝑈

𝑇
not to be a DNC2 function.

⊋ Case 3: None of Case 1 and Case 2 holds. Then 𝑊 is a ϖ0
1 graph of a

{0, 1}-valued DNC function. This contradicts the fact that 0 is not PA.

We are now ready to prove Theorem 5.1.9. Given 𝑇 ↘ ℕ, let D𝑇 be the set
of all conditions 𝑍 ↘ ℙ forcing ϑ𝑈

𝑇
not to be a DNC2 function. It follows from

Lemma 5.1.10 that every D𝑇 is dense, hence every su"ciently generic filter F
is {D𝑇 : 𝑇 ↘ ℕ}-generic, so 𝑈F is not of PA degree. This completes the proof
of Theorem 5.1.9.

5.2 Weak merging

In some cases, such as with disjunctive notions of forcing with ϖ0
1-preserving

disjunctive forcing questions, the forcing question is not ω0
1-merging simply
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6: The idea is the following: We considered
so far only valuations with a singleton do-
main, thus there were at most 2 incompati-
ble such valuations. Considering valuations
with finite domain is a way to obtain more
pairwise incompatible valuations.

because given a pair of ω0
1 formulas 𝜕0(𝑈) and 𝜕1(𝑈) the extension might

force 𝜕0(𝑈0) on the left side, and 𝜕1(𝑈1) on the right side. If however one
considers three ω0

1 formulas, by the pigeonhole principle, two of them must
be forced on the same side. We will later consider tree-like notions of forcing
whose number of disjunctive clauses might increase over extension, thus
requiring a larger number of formulas to find an extension forcing two of them
simultaneously. This motivates the following definition.

Definition 5.2.1. Given a notion of forcing (ℙ,↓) and a family of formu-
las ς, a forcing question is weakly ς-merging55: Note that in the definition of a weakly ς-

merging forcing question, the parameter 𝑏
might depend on the condition 𝑌.

if for every 𝑌 ↘ ℙ, there is
some 𝑏 ↘ ℕ such that for every 𝑏-tuple of ς-formulas 𝜕0(𝑈), . . . , 𝜕𝑏∈1(𝑈),
if 𝑌 ?′𝜕𝑐(𝑈) for each 𝑐 < 𝑏, then there is an extension 𝑍 ↓ 𝑌 and two
indices 𝑐 < 𝑑 < 𝑏 such that 𝑍 forces 𝜕𝑐(𝑈) ∞ 𝜕 𝑑(𝑈). ↗

The following exercise shows that the forcing question of the Dzhafarov-
Jockusch theorem is weakly ω0

1-merging, with the appropriate adaptation
to disjunctive forcing notions.

Exercise 5.2.2. Consider the question of forcing of Exercise 3.4.10. Let {𝜕 𝑑

0(𝑈),
𝜕 𝑑

1(𝑈) : 𝑑 < 3} be a family of ϖ0
1 formulas. Show that if for each 𝑑 < 3,

𝑌 ?⫅̸𝜕 𝑑

0(𝑈0)⇑𝜕 𝑑

1(𝑈1), then there is an extension 𝑍 ↓ 𝑌, a side 𝑐 < 2 and two
indices 𝑒 < 𝑓 < 3 such that 𝑍 forces ¬𝜕𝑒

𝑐
(𝑈𝑐) ∞ ¬𝜕𝑓

𝑐
(𝑈𝑐). 𝜒

As for every avoidance or preservation notion, the key diagonalization lemma
is based on a 3-case analysis. The first case says that the Turing functional
outputs some erroneous description of an object, while the second case en-
sures that the Turing functional is partial. The two first cases are not mutually
exclusive. The third case, which consists of the negation of Case 1 and Case 2,
cannot happen, because otherwise, there will be an e!ective description of
some uncomputable object. For cone avoidance, preservation of 1 hyperimmu-
nity, or preservation of 1 non-ϖ0

1 definition, the third case was trivial. Working
with weakly merging forcing questions yields the first non-trivial case analysis.
Let us first introduce some terminology.

A valuation6 is a partial {0, 1}-valued function 𝑔 ∋ ℕ ≃ 2. A valuation is
finite if it has finite support, that is, dom 𝑔 is finite. A valuation 𝑔 is correct if
for every 𝑎 ↘ dom 𝑔, ϑ𝑎(𝑎)⇓ε 𝑔(𝑎). Two valuations 𝑆 and 𝑔 are compatible
if for every 𝑎 ↘ dom 𝑆 △ dom 𝑔, 𝑆 (𝑎) = 𝑔(𝑎).

Lemma 5.2.3 (Liu [12]). Let 𝑊 be a c.e. set of finite valuations. Either 𝑊 con-
tains a correct valuation, or for every 𝑏 ↘ ℕ, there are 𝑏 pairwise incompatible
finite valuations outside of 𝑊 . 𝜒

P!""#. Suppose 𝑊 contains no correct valuation, otherwise we are done.
Let 𝑕 be the set of finite sets 𝑖 ∋ ℕ such that for each 𝑎 ϱ 𝑖, either ϑ𝑎(𝑎)⇓,
or there is a valuation 𝑔 ↘ 𝑊 such that 𝑖 ▽ {𝑎} ∋ dom 𝑔 and for every 𝑗 ↘
dom 𝑔 \ (𝑖 ▽ {𝑎}), ϑ𝑗(𝑗)⇓ε 𝑔(𝑗). Note that if 𝑖 ϱ 𝑕, this is witnessed by
some 𝑎 ϱ 𝑖.

Claim 1: ↑ ϱ 𝑕. Indeed, otherwise, for each 𝑎 ↘ ℕ, one of the two ϖ0
1 cases

holds:

1. ϑ𝑎(𝑎)⇓ ;
2. there is a finite valuation 𝑔 ↘ 𝑊 such that 𝑎 ↘ dom 𝑔 and for every

𝑗 ε 𝑎, ϑ𝑗(𝑗)⇓ε 𝑔(𝑗).
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Then one can compute a {0, 1}-valued DNC function by waiting on input 𝑎 for
either case to occur. Then output 1 ∈ϑ𝑎(𝑎) in the former case, and 1 ∈ 𝑔(𝑎)
in the latter case. Since 𝑊 contains no correct valuation, 𝑔(𝑎) = ϑ𝑎(𝑎).
Claim 2: For any set 𝑖 ϱ 𝑕 and 𝑘 witnessing this fact, 𝑖 ▽ {𝑘} ϱ 𝑕. Indeed,
otherwise, for each 𝑎 ϱ 𝑖 ▽ {𝑘}, one of the two ϖ0

1 cases holds:

1. ϑ𝑎(𝑎)⇓ ;
2. there is a finite valuation 𝑔 ↘ 𝑊 such that 𝑖 ▽ {𝑘 , 𝑎} ∋ dom 𝑔 and for

every 𝑗 ϱ 𝑖 ▽ {𝑘 , 𝑎}, ϑ𝑗(𝑗)⇓ε 𝑔(𝑗).
Here again, one can compute a {0, 1}-valued DNC function by hardcoding the
appropriate values on 𝑖 ▽ {𝑘}, and for any 𝑎 ϱ 𝑖 ▽ {𝑘}, waiting for either
case to occur. In the first case, output 1 ∈ ϑ𝑗(𝑗), and in the second case,
output 1 ∈ 𝑔(𝑎). We cannot have ϑ𝑎(𝑎)⇓ε 𝑔(𝑎), otherwise 𝑔 would be a
counter-example to the fact that 𝑘 is a witness of 𝑖 ϱ 𝑕.

Using Claim 1 and Claim 2, one can define for any 𝑏 an infinite sequence
𝑎0 , 𝑎1 , . . . such that for any 𝑐 ↘ ℕ, 𝑎𝑐 witnesses that {𝑎𝑑 : 𝑑 < 𝑐} ϱ 𝑕. There
are 2𝑐+1 many pairwise incompatible valuations with domain {𝑎𝑑 : 𝑑 ↓ 𝑐}, and
none of them can be in 𝑊 , as it would contradict the fact that 𝑎𝑐 is a witness of
{𝑎𝑑 : 𝑑 < 𝑐} ϱ 𝑕.

We can prove the following abstract PA avoidance theorem using Liu’s lemma. [12]

Theorem 5.2.4
Let (ℙ,↓) be a notion of forcing with a ϖ0

1-preserving weakly ω0
1-merging

forcing question. For every su!ciently generic filter F, 𝑈F is not of PA
degree.

P!""#. It su"ces to prove the following diagonalization lemma.

Lemma 5.2.5. For every condition 𝑌 ↘ ℙ and every Turing index 𝑇 ↘ ℕ, there
is an extension 𝑍 ↓ 𝑌 forcing ϑ𝑈

𝑇
not to be a DNC2 function. 𝜒

P!""#. Let 𝑏 ↘ ℕ witness that the forcing question is weakly ω0
1-merging

for 𝑌. Consider the following set

𝑊 = {𝑔 finite valuation : 𝑌 ?′ϑ𝑈

𝑇
is incompatible with 𝑔}

Note that being incompatible is a ϖ0
1 statement, so since the forcing question

is ϖ0
1-preserving, the set 𝑊 is ϖ0

1. There are three cases:

⊋ Case 1: 𝑊 contains a correct valuation 𝑔. By Property (1) of the forcing
question, there is an extension 𝑍 ↓ 𝑌 forcing ϑ𝑈

𝑇
to be incompatible

with 𝑔. In particular, 𝑍 forces ϑ𝑈

𝑇
not to be a DNC2 function.

⊋ Case 2: there are 𝑏 pairwise incompatible finite valuations 𝑔0 , . . . , 𝑔𝑏∈1
outside of 𝑊 . Since the forcing question is ω0

1-merging, there is an
extension 𝑍 ↓ 𝑌 and two indices 𝑒 < 𝑓 < 𝑏 such that 𝑍 forces ϑ𝑈

𝑇

to be compatible simultaneously with 𝑔𝑒 and 𝑔𝑓 . Since 𝑔𝑒 and 𝑔𝑓 are
incompatible, then 𝑍 forces ϑ𝑈

𝑇
to be partial.

⊋ Case 3: None of Case 1 and Case 2 holds. This case cannot happen by
Lemma 5.2.3.

We are now ready to prove Theorem 5.2.4. Given 𝑇 ↘ ℕ, let D𝑇 be the set
of all conditions 𝑍 ↘ ℙ forcing ϑ𝑈

𝑇
not to be a DNC2 function. It follows from
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7: The statement was originally introduced
by Flood [30] under the name Ramsey-type
König’s lemma (RKL). It was later renamed
for consistency.

8: There exists an alternative simpler
proof [31] of this theorem which exploits
the fact that the class of {0, 1}-valued DNC
functions is ω0

1 and not simply closed in
Cantor space. The proof given in this book,
although more complex, is morally the “true”
proof, in that its combinatorics extend to
stronger theorems, such as Liu [32].

9: A Mathias precondition is a pair (𝜓,𝑂)
such that ̸𝑉 ↘ 𝑂 𝑉 > |𝜓| , but 𝑂 might be
finite or empty.

Lemma 5.2.5 that every D𝑇 is dense, hence every su"ciently generic filter F
is {D𝑇 : 𝑇 ↘ ℕ}-generic, so 𝑈F is not of PA degree. This completes the proof
of Theorem 5.2.4.

5.3 Ramsey-type WKL

Both the original proof and the modern proof of Seetapun’s theorem involve ω0
1

classes of instances of RT1
2, and thus make use of compactness. It is natural to

ask whether this use is necessary. Liu’s theorem states that Ramsey’s theorem
for pairs admits PA avoidance. However, PA avoidance only means that full
compactness is not needed, but does not rule out the presence of some weak
form of compactness. As it turns out, Ramsey’s theorem for pairs implies
a weak form of compactness called the Ramsey-type weak König’s lemma
(RWKL). Informally, RWKL states that for every non-empty ω0

1 class P ∋ 2ℕ ,
there exists some infinite set 𝑙 which is homogeneous for one of the members
𝑂 ↘ P seen as an instance of RT1

2. However, the exact formulation requires
more technicality not to imply the existence of 𝑂.

Definition 5.3.1. Let𝑁 ∋ 2<ℕ be an infinite binary tree. A finite set 𝑖 ∋ ℕ is
homogeneous for 𝑁 if {𝜓 ↘ 𝑁 : (̸𝑉 ↘ 𝑖)𝜓(𝑉) = 𝑐} is infinite for some 𝑐 < 2.
An infinite set 𝑙 ∋ ℕ is homogeneous for 𝑁 if every finite subset of it is
homogeneous for 𝑁. ↗

By extension, we say that an infinite set 𝑙 is homogeneous for a ω0
1 class P

if it is homogeneous for a tree 𝑁 such that P = [𝑁]. The Ramsey-type weak
König’s lemma (RWKL)7 is the statement “Every infinite binary tree admits an
infinite homogeneous set.”

Proposition 5.3.2 (Flood [30]). RT2
2 implies RWKL over RCA0. 𝜒

P!""#. Let 𝑁 ∋ 2<ℕ be an infinite binary tree. Define 𝑆 : [ℕ]2 ≃ 2 by
𝑆 (𝑉 , 𝑚) = 𝜓𝑚(𝑉), where 𝜓𝑚 is the left-most element of 𝑁 of length 𝑚. Any
infinite homogeneous set for 𝑆 is homogeneous for 𝑁.

The remainder of this section is devoted to the proof that RWKL admits PA
avoidance, hence is strictly weaker than WKL0.8

Theorem 5.3.3 (Liu [12])
Let P ∋ 2ℕ be a non-empty ω0

1 class. There is an infinite homogeneous
set 𝑙 for P of non-PA degree.

P!""#. Let ℙ be the notion of forcing whose conditions are tuples (𝑏 , ↦𝜓,A)
where

1. 𝑏 ↘ ℕ is the number of parts ;
2. ↦𝜓 = ∀𝜓0 , . . . , 𝜓𝑏∈1∃ is a 𝑏-tuple of binary strings ;
3. A∋ 𝑏

𝜑 is a non-empty ω0
1 class of 𝑏-partitions.

One can see a condition 𝑌 = (𝑏 , ↦𝜓,A) as a 𝑏-tuple of families of Mathias
preconditions9 (𝜓𝑐 ,𝑂∈1(𝑐) \ {0, . . . , |𝜓|}) for any 𝑂 ↘ A. We say that part 𝑐
of 𝑌 is acceptable if there exists some 𝑂 ↘ A such that 𝑂∈1(𝑐) is infinite.
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10: Over extension, some parts of a condi-
tion might be splitting. The map keeps track
of which part refines which one. This map
may not be unique, but it does not matter.

11: The set 𝑊 plays the same role as in
Lemma 5.2.5.

The intended initial condition is (2, ∀↑, ↑∃,P). The interpretation of a condition
(𝑏 , ↦𝜓,A) is

[𝑏 , ↦𝜓,A] = {(𝑈0 , . . . ,𝑈𝑏∈1) : ⇐𝑂 ↘ A̸𝑐 < 𝑏 𝜓𝑐 ∋ 𝑈𝑐 ∋ 𝜓𝑐 ▽ 𝑂
∈1(𝑐)}

A condition 𝑍 = (𝑛 , ↦𝜔,B) extends 𝑌 = (𝑏 , ↦𝜓,A) if 𝑛 ∝ 𝑏 and there is a map10

𝑆 : 𝑛 ≃ 𝑏 such that for every 𝑃 ↘ B, there is some 𝑂 ↘ Asuch that for every
𝑐 < 𝑛 , (𝜔𝑐 ,𝑃∈1(𝑐)) Mathias extends (𝜓𝑐 ,𝑂∈1(𝑐)), that is, 𝑃∈1(𝑐) ∋ 𝑂

∈1(𝑐) and
𝜓𝑐 ∋ 𝜔𝑐 ∋ 𝜓𝑐 ▽ 𝑂

∈1(𝑐). We say that part 𝑐 of 𝑍 refines part 𝑆 (𝑐) of 𝑌.

Given a condition 𝑌 = (𝑏 , ↦𝜓,A), we shall construct actually only two kinds of
extensions:

⊋ A condition 𝑍 = (𝑛 , ↦𝜔,B) is a part 𝑐 extension of 𝑌 if 𝑛 = 𝑏, the extension
map 𝑆 is the identity function, and 𝜔𝑑 = 𝜓𝑑 for all 𝑑 ε 𝑐.

⊋ A condition 𝑍 = (𝑛 , ↦𝜔,B) is a splitting extension of 𝑌 if, letting 𝑆 be the
map witnessing the extension, for every 𝑐 < 𝑛 , 𝜔𝑐 = 𝜓

𝑆 (𝑐).

Given a condition 𝑌 = (𝑏 , ↦𝜓,A), and some Turing index 𝑇, let 𝑜𝑇(𝑌) ∋ 𝑏 be
the set of acceptable parts 𝑐 of 𝑌 which do not already force ϑ𝑈

𝑇
not to be a

DNC2 function.

Lemma 5.3.4. For every condition 𝑌 = (𝑏 , ↦𝜓,A) and every Turing index 𝑇

such that 𝑜𝑇(𝑌) ε ↑, there is an extension 𝑍 ↓ 𝑌 such that 𝑜𝑇(𝑍) ⫆̸ 𝑜𝑇(𝑌). 𝜒

P!""#. We will either find a part 𝑐 extension 𝑍 ↓ 𝑌 for some 𝑐 ↘ 𝑜𝑇(𝑌) such
that 𝑍 which will force ϑ𝑈

𝑇
not to be a DNC2 function on part 𝑐, in which case

𝑜𝑇(𝑍) = 𝑜𝑇(𝑌) \ {𝑐}, or a splitting extension forcing ϑ𝑈

𝑇
not to be a DNC2

function on every part, in which case 𝑜𝑇(𝑍) = ↑.

Recall the notion of valuation from Theorem 5.2.4. Consider the following set:11

𝑊 =
{
𝑔 finite valuation :

̸𝑂 ↘ A⇐𝑐 ↘ 𝑜𝑇(𝑌) ⇐𝜖 ∋ 𝑂
∈1(𝑐)

ϑ𝜓𝑐▽𝜖
𝑇

is incompatible with 𝑔

}

Note that by e!ective compactness, letting 𝑁 ∋ 𝑏
<ℕ be a computable tree

such that [𝑁] = A, the set 𝑊 can equivalently be defined as

𝑊 =
{
𝑔 finite valuation :

⇐𝑎̸𝜔 ↘ 𝑁 △ 𝑏
𝑎 ⇐𝑐 ↘ 𝑜𝑇(𝑌) ⇐𝜖 ∋ 𝜔∈1(𝑐)

ϑ𝜓𝑐▽𝜖
𝑇

is incompatible with 𝑔

}

Thus, the set 𝑊 is ϖ0
1. There are three cases.

⊋ Case 1: 𝑊 contains a correct valuation 𝑔. Fix some 𝑂 ↘ A, and let
𝑐 ↘ 𝑜𝑇(𝑌) and 𝜖 ∋ 𝑂

∈1(𝑐) be such that ϑ𝜓𝑐▽𝜖
𝑇

is incompatible with 𝑔.
Letting B = {𝑃 ↘ A : 𝜖 ∋ 𝑃

∈1(𝑐)}, 𝜔𝑐 = 𝜓𝑐 ▽ 𝜖 and 𝜔𝑑 = 𝜓𝑑

otherwise, the condition (𝑏 , ↦𝜔,B) is a part 𝑐 extension of 𝑌 forcing ϑ𝑈

𝑇

to be incompatible with 𝑔 on part 𝑐, hence forcing ϑ𝑈

𝑇
not to be a DNC2

function on part 𝑐.
⊋ Case 2: there are 𝑏+1 pairwise incompatible finite valuations 𝑔0 , . . . , 𝑔𝑏

outside of 𝑊 . For each 𝑝 ↓ 𝑏, let B𝑝 ∋ 𝑏
ℕ be the ω0

1 class of all 𝑂 ↘ A

such that for every 𝑐 ↘ 𝑜𝑇(𝑌) and every 𝜖 ∋ 𝑂
∈1(𝑐), ϑ𝜓𝑐▽𝜖

𝑇
is compatible

with 𝑔𝑝 . By assumption, B𝑝 ε ↑ for every 𝑝 ↓ 𝑏. We say that 𝑃 ↘
(𝑏𝑏+1)𝜑 is the refined partition of (𝑂0 , . . . ,𝑂𝑏) ↘ B0 ↖ · · · ↖ B𝑏 if for
every 𝜗 < 𝑏

𝑏+1 interpreted as a 𝑏-ary string of length 𝑏 + 1, 𝑃∈1(𝜗) =⋂
𝑝↓𝑏

𝑂
∈1
𝑝
(𝜗(𝑝)). Let B∋ (𝑏𝑏+1)𝜑 be the class of all refined partitions



60 5 Compactness avoidance

12: The original proof of Liu’s theorem was
also using the decomposition into COH and
RT1

2. However, it directly proved that RT1
2 ad-

mits strong PA avoidance without using PA
avoidance of RWKL. Proving first PA avoid-
ance of RWKL enables to reduce the com-
plexity of each forcing, by separating the
compactness from the disjunction issues.

of members of B0 ↖ · · ·↖B𝑏 . By the pigeonhole principle, for every 𝜗 ↘
𝑏
𝑏+1, there is some 𝑐𝜗 ↘ 𝑏 and some 𝑝 < 𝑞 ↓ 𝑏 such that 𝜗(𝑝) = 𝜗(𝑞) =

𝑐𝜗. Let 𝑆 : 𝑏𝑏+1 ≃ 𝑏 be the defined by 𝑆 (𝜗) = 𝑐𝜗. For each 𝜗 ↘ 𝑏
𝑏+1,

let 𝜔𝜗 = 𝜓
𝑆 (𝜗). The condition 𝑍 = (𝑏𝑏+1

, ↦𝜔,B) is a splitting extension
of 𝑌. Moreover, every part 𝜗 of 𝑍 refining some part 𝑐 ↘ 𝑜𝑇(𝑌) of 𝑌
forces ϑ𝑈

𝑇
to be compatible with 𝑔𝑝 and 𝑔𝑞 , for 𝑝 < 𝑞 ↓ 𝑏 such that

𝜗(𝑝) = 𝜗(𝑞) = 𝑆 (𝜗). Since 𝑔𝑝 and 𝑔𝑞 are incompatible, such part 𝜗 of 𝑍
forces ϑ𝑈

𝑇
to be partial, hence 𝜗 ϱ 𝑜𝑇(𝑍). Last, if part 𝜗 of 𝑍 refines some

part 𝑐 ϱ 𝑜𝑇(𝑌) of 𝑌, then 𝜗 ϱ 𝑜𝑇(𝑍), so 𝑜𝑇(𝑍) = ↑.
⊋ Case 3: None of Case 1 and Case 2 holds. This case cannot happen by

Lemma 5.2.3.

Consider an infinite, su"ciently generic decreasing sequence of conditions
𝑌0 ∝ 𝑌1 ∝ . . . with 𝑌𝑝 = (𝑏𝑝 , ↦𝜓𝑝 ,A𝑝), together with the refinement maps
𝑆𝑝 : 𝑏𝑝+1 ≃ 𝑏𝑝 witnessing the extensions. Note that each condition has an
acceptable part, and if part 𝑐 of 𝑌𝑝+1 is acceptable, then so is part 𝑆𝑝(𝑐) of 𝑌𝑝 .
Thus, by König’s lemma, there exists a sequence 𝑄 ↘ 𝜑𝜑 such that for every 𝑝,
part 𝑄(𝑝) of 𝑌𝑝 is acceptable, and part 𝑄(𝑝 + 1) of 𝑌𝑝+1 refines part 𝑄(𝑝) of 𝑌𝑝 ,
that is, 𝑆𝑝(𝑄(𝑝 + 1)) = 𝑄(𝑝). This induces a set 𝑈𝑄 defined by 𝑈 =

⋃
𝑝
𝜓
𝑝 ,𝑄(𝑝).

By genericity of the sequence, 𝑈𝑄 is infinite. Moreover, by Lemma 5.3.4, 𝑈𝑄

is not of PA degree. This completes the proof of Theorem 5.3.3.

5.4 Liu’s theorem

Liu’s theorem states that Ramsey’s theorem for pairs admits PA avoidance.
Recall that the modern proof of Seetapun’s theorem (Theorem 3.4.11) was
divided into a proof of cone avoidance of COH and a proof of strong cone
avoidance of RT1

2. The proof of Liu’s theorem follows the same structure.

Recall that an infinite set 𝑟 is cohesive for a sequence of sets ↦𝑠 = 𝑠0 , 𝑠1 , . . .

if for every 𝑎 ↘ ℕ, 𝑟 ∋¬
𝑠𝑎 or 𝑟 ∋¬

𝑠𝑎 . The cohesiveness principle (COH)
is the problem whose instances are infinite sequences of sets, and whose
solutions are infinite cohesive sets.

Exercise 5.4.1. Combine Exercise 3.4.3 and Exercise 5.1.5 to prove that COH
admits PA avoidance. 𝜒

Exercise 5.4.2. Recall the notion of computable Mathias forcing from Exer-
cise 3.2.8. Given a condition (𝜓,𝑂) and aϖ0

1 formula 𝜕(𝑈), let (𝜓,𝑂) ?′𝜕(𝑈)
hold if there is some 𝜖 ∋ 𝑂 such that 𝜕(𝜓 ▽ 𝜖) holds.

1. Show that this is a ϖ0
1-preserving, ω0

1-merging forcing question.
2. Deduce that COH admits PA avoidance. 𝜒

Our last step consists in proving that RT1
2 admits strong PA avoidance.12

Theorem 5.4.3 (Liu [12])
For every set 𝑋, there is an infinite subset 𝑙 ∋ 𝑋 or 𝑙 ∋ 𝑋 of non-PA
degree.13

13: From many viewpoints, the proof of this
theorem will be similar to the proof of The-
orem 3.4.6. It is strongly advised to have a
good understanding of the latter proof.
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14: This is the only di!erence with the no-
tion of forcing of Theorem 3.4.6.

15: The set 𝑊 is a combination of the forc-
ing question of Theorem 3.4.6, but working
with valuations due to the disjunctive nature
of the forcing question.

P!""#. Fix 𝑋. As in Theorem 3.4.6, we shall build two sets 𝑈0 ,𝑈1 simultane-
ously, with 𝑈0 ∋ 𝑋 and 𝑈1 ∋ 𝑋. For simplicity, let 𝑋0 = 𝑋 and 𝑋1 = 𝑋.

The two sets will be constructed through a variant of Mathias forcing, whose
conditions are triples (𝜓0 , 𝜓1 ,𝑂) where

1. (𝜓𝑐 ,𝑂) is a Mathias condition for each 𝑐 < 2 ;
2. 𝜓𝑐 ∋ 𝑋𝑐 ;
3. 𝑂 is not of PA degree14.

The interpretation [𝜓0 , 𝜓1 ,𝑂] of a condition (𝜓0 , 𝜓1 ,𝑂) is the class

[𝜓0 , 𝜓1 ,𝑂] = {(𝑈0 ,𝑈1) : ̸𝑐 < 2 𝜓𝑐 ↙ 𝑈𝑐 ∋ 𝜓𝑐 ▽ 𝑂}

A condition (𝜔0 , 𝜔1 ,𝑃) extends (𝜓0 , 𝜓1 ,𝑂) if (𝜔𝑐 ,𝑃) Mathias extends (𝜓𝑐 ,𝑂)
for each 𝑐 < 2. Any filter F induces two sets 𝑈F,0 and 𝑈F,1 defined by
𝑈F,𝑐 =

⋃{𝜓𝑐 : (𝜓0 , 𝜓1 ,𝑂) ↘ F}. Note that (𝑈F,0 ,𝑈F,1) ↘
⋂{[𝜓0 , 𝜓1 ,𝑂] :

(𝜓0 , 𝜓1 ,𝑂) ↘ F}.

The goal is therefore to build two infinite sets 𝑈0 ,𝑈1, satisfying the following
requirements for every 𝑇0 , 𝑇1 ↘ ℕ:

R𝑇0 ,𝑇1 : ϑ𝑈0
𝑇0 is not DNC2 ⇑ϑ𝑈1

𝑇1 is not DNC2

If every requirement is satisfied, then a pairing argument shows that either 𝑈0,
or 𝑈1 is not of PA degree. We make the following assumption:

There is no infinite set 𝑙 ∋ 𝑋 or 𝑙 ∋ 𝑋 of non-PA degree. (H1)

Under this assumption, one can prove that if F is su"ciently generic, then
both 𝑈F,0 and 𝑈F,1 are infinite.

Lemma 5.4.4. Suppose (H1). Let 𝑌 = (𝜓0 , 𝜓1 ,𝑂) be a condition and 𝑐 < 2.
There is an extension (𝜔0 , 𝜔1 ,𝑃) of 𝑌 and some 𝑎 > |𝜓𝑐 | such that 𝑎 ↘ 𝜔𝑐 .𝜒

P!""#. If 𝑂 △ 𝑋
𝑐 is empty, then 𝑂 ∋ 𝑋

1∈𝑐 , but 𝑂 is of non-PA degree, which
contradicts (H1). Thus, there is 𝑎 ↘ 𝑂△𝑋

𝑐 . Let 𝜔𝑐 = 𝜓𝑐▽{𝑎}, and 𝜔1∈𝑐 = 𝜓1∈𝑐 .
Then, (𝜔0 , 𝜔1 ,𝑂 \ {0, . . . , 𝑎 ∈ 1}) is an extension of 𝑌 such that 𝑎 ↘ 𝜔𝑐 .

We will now prove the core lemma.

Lemma 5.4.5. Let 𝑌 = (𝜓0 , 𝜓1 ,𝑂) be a condition, and 𝑇0 , 𝑇1 ↘ ℕ. There is
an extension (𝜔0 , 𝜔1 ,𝑃) of 𝑌 forcing R𝑇0 ,𝑇1 . 𝜒

P!""#. Consider the following set15

𝑊 =
{
𝑔 finite valuation :

̸𝐿0 ∅ 𝐿1 = 𝑂 ⇐𝑐 < 2 ⇐𝜖 ∋ 𝐿𝑐

ϑ𝜓𝑐▽𝜖
𝑇𝑐

is incompatible with 𝑔

}

Here again, the previous set is ϖ0
1(𝑂), as it can be equivalently defined as

{
𝑔 finite valuation :

⇐𝑛 ↘ ℕ̸𝐿0 ∅ 𝐿1 = 𝑂⫋
𝑛
⇐𝑐 < 2 ⇐𝜖 ∋ 𝐿𝑐

ϑ𝜓𝑐▽𝜖
𝑇𝑐

is incompatible with 𝑔

}

There are three cases:
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As in the proof of strong cone avoidance, we
are getting a ω0

1 class of instances of RT1
2.

In the proof of strong cone avoidance, we
simply picked a member of this class using
the cone avoidance basis theorem. Here,
since we need to avoid PA degrees, we can-
not pick a member, so we use RWKL instead
of WKL. The true complexity of this construc-
tion is hidden in the proof that RWKL admits
PA avoidance.

⊋ Case 1: 𝑊 contains a correct valuation 𝑔. Letting 𝐿0 = 𝑋0 △ 𝑂 and
𝐿1 = 𝑋1 △𝑂, there is some 𝑐 < 2 and some 𝜖 ∋ 𝐿𝑐 such that ϑ𝜓𝑐▽𝜖

𝑇𝑐
is

incompatible with 𝑔. Letting 𝜔𝑐 = 𝜓𝑐 ▽ 𝜖 and 𝜔1∈𝑐 = 𝜓1∈𝑐 , the condition
(𝜔0 , 𝜔1 ,𝑂 \ {0, . . . ,max 𝜖}) is an extension of 𝑌 forcing ϑ𝑈𝑐

𝑇𝑐
to be

incompatible with 𝑔, hence not being a DNC2 function.
⊋ Case 2: there are 3 pairwise incompatible finite valuations 𝑔0 , 𝑔1 , 𝑔2

outside of 𝑊 . For each 𝑝 < 3, let P𝑝 ∋ 2ℕ be the ω0
1 class of all 𝑃𝑝 such

that, letting 𝑃𝑝 ,0 = 𝑃𝑝 and 𝑃𝑝 ,1 = 𝑃𝑝 , for every 𝑐 < 2 and every 𝜖 ∋
𝑃𝑝 ,𝑐 △ 𝑂, ϑ𝜓𝑐▽𝜖

𝑇𝑐
is compatible with 𝑔𝑝 . By assumption, P𝑝 ε ↑ for

every 𝑝 < 3. Since RWKL admits PA avoidance (Theorem 5.3.3), there
is a decreasing sequence of sets 𝑂 ℜ 𝑃0 ℜ 𝑃1 ℜ 𝑃2 such that 𝑃𝑝 is
homogeneous for P𝑝 for some color 𝑐𝑝 < 2, and 𝑃2 ↔𝑃1 ↔𝑃0 ↔ 𝑂 is not
of PA degree. By the pigeonhole principle, there exist some 𝑝 < 𝑞 < 3
and some color 𝑐 < 2 such that 𝑐 = 𝑐𝑝 = 𝑐𝑞 . The condition (𝜓0 , 𝜓1 ,𝑃2)
is an extension of 𝑌 forcing ϑ𝑈𝑐

𝑇𝑐
to be compatible with 𝑔𝑝 and 𝑔𝑞 , hence

forcing ϑ𝑈𝑐

𝑇𝑐
to be partial.

⊋ Case 3: None of Case 1 and Case 2 holds. This case cannot happen by
Lemma 5.2.3.

We are now ready to prove Theorem 5.4.3. Let Fbe a su"ciently generic filter
for this notion of forcing, and for each 𝑐 < 2, let 𝑈𝑐 = 𝑈F,𝑐 . By Lemma 5.4.4,
both sets are infinite. Moreover, by Lemma 5.4.5, either 𝑈0 or 𝑈1 is not of PA
degree. Letting 𝑙 be this set, it satisfies the statement of Theorem 5.4.3.

We can now prove Liu’s theorem by combining PA avoidance of COH and
strong PA avoidance of RT1

2.

Theorem 5.4.6 (Liu [12])
Every computable coloring 𝑆 : [ℕ]2 ≃ 2 has an infinite 𝑆 -homogeneous
set of non-PA degree.

P!""#. The proof follows the one of Theorem 3.4.1. Fix 𝑆 . Let ↦𝑠 = 𝑠0 , 𝑠1 , . . .

be the computable sequence of sets defined for every 𝑉 ↘ ℕ by 𝑠𝑉 = {𝑚 ↘
ℕ : 𝑆 (𝑉 , 𝑚) = 1}. By Exercise 5.4.1, there is an infinite ↦𝑠-cohesive set 𝑂 ∋ ℕ

of non-PA degree. In particular, for every 𝑉 ↘ 𝑂, lim𝑚↘𝑂 𝑆 (𝑉 , 𝑚) exists. Let 𝑆 :
𝑂 ≃ 2 be the limit coloring of 𝑆 , that is, 𝑆 (𝑉) = lim𝑚↘𝑂 𝑆 (𝑉 , 𝑚). By Theo-
rem 5.4.3, there is an infinite 𝑆 -homogeneous set 𝑃 ∋ 𝑂 for some color 𝑐 < 2
such that𝑃↔𝑂 is of non-PA degree. Since for every 𝑉 ↘ 𝑃, lim𝑚↘𝑃 𝑆 (𝑉 , 𝑚) = 𝑐,
one can thin out the set𝑃 to obtain an infinite 𝑆 -homogeneous subset 𝑙 ∋ 𝑃.

5.5 Randomness

Algorithmic randomness is a sub-field of computability theory studying the
amount of randomness contained in binary sequences taken individually. Con-
trary to the notion of e!ective computability which admits a robust mathematical
definition, randomness does not translate mathematically to a single notion,
but to a hierarchy of concepts. Nonetheless, randomness admits its own form
of robustness, by having many di!erent characterizations based on multiple
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16: This is known as the Martin-Löf-Chaitin
thesis, and plays the same role as the
Church-Turing thesis for computability.

17: The proof of the existence of a universal
prefix-free machine goes as follows: Prove
the existence of a total computable function
𝑆 : ℕ ≃ ℕ such that for every 𝑇 ↘ ℕ,
ϑ

𝑆
(𝑇) is prefix-free and if ϑ𝑇 is prefix-free,

then ϑ
𝑆 (𝑇) = ϑ𝑇 . Then, let

𝑡(1𝑇0𝜓) = ϑ
𝑆 (𝑇)(𝜓)

paradigms. See Downey and Hirschfeldt [33] or Nies [34] for an introduction
on algorithmic randomness.

Among the notions of randomness, Martin-Löf randomness is widely considered
as capturing the intuitive idea of a random sequence.16 It can be equivalently
defined using multiple paradigms:

⊋ Incompressibility: There should be no recognizable pattern in the se-
quence, which would yield a possibility to compress the sequence. This
approach due to Chaitin is based on Kolmogorov complexity.

⊋ Unpredicability: One should not be able to predict the the bits of the
sequence. This approach is formalized using martingales.

⊋ Measure: Random sequences should not satisfy any “rare” properties
which can be e!ectively described.

Kolmogorov complexity is probably the shortest way to define Martin-Löf ran-
domness. A prefix-free machine is a partial computable function 𝑡 : 2<ℕ ≃
2<ℕ whose domain is prefix-free, that is, if 𝜓, 𝜔 ↘ dom 𝑡 with 𝜓 ε 𝜔, then they
are incomparable. A prefix-free machine 𝑡 is universal17 if for every prefix-free
machine 𝑢 , there is some 𝜖 ↘ 2<ℕ such that (̸𝜓 ↘ 2<ℕ)𝑡(𝜖𝜓) = 𝑢(𝜓).

Definition 5.5.1. Fix a universal prefix-free machine 𝑡. The Kolmogorov
complexity 𝑣𝑡(𝜓) of a string 𝜓 ↘ 2<ℕ is the length of the shortest string 𝜔 ↘
2<ℕ such that 𝑡(𝜔) = 𝜓. ↗

The Kolmogorov complexity of a string depends on the choice of a universal
prefix-free machine. Given another universal prefix-free machine 𝑢 , (̸𝜓 ↘
2<ℕ)𝑣𝑢 (𝜓) = 𝑣𝑡(𝜓) + O(1). Kolmogorov complexity is therefore an asymp-
totic notion of complexity. From now on, we omit the subscript 𝑡 and work
with inequalities to additive constant, noted ↓+.

Exercise 5.5.2. Show that for every 𝜓 ↘ 2<ℕ , 𝑣(𝜓) ↓+ |𝜓| + 2 log2(|𝜓|). 𝜒

Definition 5.5.3 (Chaitin [35] and Levin [36]). A set 𝑂 ↘ 2ℕ is Martin-Löf
random18 18: This definition is independently due to

Chaitin and Levin, but coincides with the
notion of Martin-Löf randomness based of
measure.

if for every 𝑎 ↘ ℕ, 𝑣(𝑂⫋
𝑎
) ∝+

𝑎. ↗

The Lebesgue measure on Cantor space 2ℕ is the measure 𝜘 induced by
letting 𝜘([𝜓]) = 2∈|𝜓| for every 𝜓 ↘ 2<ℕ . In particular, every open class U∋
2ℕ being of the form

⋃
𝜓↘𝑤 [𝜓] for some prefix-free set 𝑤 ∋ 2<ℕ , 𝜘(U) =∑

𝜓↘𝑤 [𝜓]. It follows that the Lebesgue measure of a closed class P ∋ 2ℕ
is 1 ∈ 𝜘(2ℕ \ P). In the case of closed classes, one can give a more direct
definition in terms of trees:

Exercise 5.5.4. The measure of a tree 𝑁 ∋ 2<ℕ is defined as

𝜘(𝑁) = lim
𝑎

card{𝜓 ↘ 𝑁 : |𝜓| = 𝑎}
2𝑎

Show that 𝜘(𝑁) = 𝜘([𝑁]). 𝜒

The following exercise shows the existence of a ω0
1 class of positive measure

containing only (but not all) Martin-Löf random sets.

Exercise 5.5.5. Fix a universal prefix-free machine 𝑡. For every 𝑥 ∝ 1,
let U𝑥 be the ϖ0

1 class {𝑂 : ⇐𝑎𝑣𝑡(𝑂⫋
𝑎
) < 𝑎 ∈ 𝑥} and let 𝑦𝑥 ∋ 2<ℕ be a

prefix-free set of strings such that !𝑦𝑥" = U𝑥 and such that for every 𝜓 ↘ 𝑦𝑥 ,
𝑣𝑡(𝜓) < |𝜓| ∈ 𝑥.
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21: Note that we prove a much stronger
statement since the closed class is not as-
sumed to be e!ectively closed. This actu-
ally corresponds to a proof that weak weak
König’s lemma admits strong PA avoidance.

22: A class is clopen if it is both closed and
open. Here, we use the fact that if

⋃
𝜓↘𝑤 [𝜓]

is an open class, for every 𝜙 > 0, there is a
finite subset 𝑖 ∋ 𝑤 such that

𝜘(
⋃
𝜓↘𝑖

[𝜓]) > 𝜘(
⋃
𝜓↘𝑤

[𝜓]) ∈ 𝜙

1. Show that
∑

𝜓↘𝑦𝑥
2∈|𝜓|+𝑥 ↓ ∑

𝜓↘𝑦𝑥
2∈𝑣𝑡 (𝜓) ↓ 1. 1919: For every prefix-free machine 𝑡 and

every set of strings 𝑕 ∋ 2<ℕ ,∑
𝜓↘𝑕

2∈𝑣𝑡
(𝜓) ↓ 1

2. Deduce that 𝜘(U𝑥) ↓ 2∈𝑥 , hence that the ω0
1 class 2ℕ \ U𝑥 has positive

measure.20

20: If 𝑦 ∋ 2<ℕ is prefix-free, then

𝜘(!𝑦") =
∑
𝜓↘𝑦

2∈|𝜓|

𝜒

Given a measurable class Cand a cylinder [𝜓], we write 𝜘(C|[𝜓]) = 𝜘(C△[𝜓])
𝜘([𝜓])

for the measure of C relative to [𝜓]. The Lebesgue measure satisfies the fol-
lowing theorem which happens to be a very powerful tool for the computability-
theoretic study of measure:

Theorem 5.5.6 (Lebesgue density)
Let C ∋ 2ℕ be a measurable class of positive measure. For almost ev-
ery 𝑂 ↘ C, lim𝑎 𝜘(C|[𝑂⫋

𝑎
]) = 1.

It follows from Lebesgue density theorem that for every 𝜙 > 0, there is a
cylinder [𝜓] such that 𝜘(C|[𝜓]) > 1 ∈ 𝜙.

Weak weak König’s lemma is the restriction of weak König’s lemma to trees of
positive measure, that is, the statement “Every infinite binary tree of positive
measure admits an infinite path.” WWKL0 is RCA0 augmented with weak weak
König’s lemma. By Exercise 5.5.5, there exists a ω0

1 class of positive mea-
sure containing only Martin-Löf random sequences. Conversely, for every ω0

1
class P ∋ 2ℕ of positive measure and every Martin-Löf random sequence 𝐿,
there exists a string 𝜓 ↘ 2<ℕ such that 𝜓 · 𝐿 ↘ P. Thus, WWKL0 is equivalent
to the statement “For every set 𝑂, there exists a Martin-Löf random sequence
relative to 𝑂”. For these reasons, WWKL0 is considered as capturing proba-
bilistic arguments.

Seeing WWKL0 as a restriction of WKL0 which itself captures compactness
arguments, WWKL0 can be seen as a weaker notion of compactness. We now
prove that weak weak König’s lemma admits PA avoidance using a forcing
with closed classes of positive measure.21

Theorem 5.5.7
Every closed class P ∋ 2ℕ of positive measure admits a member of non-PA
degree.

P!""#. Consider the notion of forcingℙwhose conditions are closed classes Q ∋
2ℕ of positive measure, partially ordered by inclusion. A condition is its self
interpretation.

Lemma 5.5.8. For every condition Q ↘ ℙ and every Turing index 𝑇 ↘ ℕ, there
is an extension R ↓ Q forcing ϑ𝑈

𝑇
not to be a DNC2 function. 𝜒

P!""#. By Lebesgue density theorem (Theorem 5.5.6), there is some 𝜓 ↘ 2<ℕ
such that 𝜘(Q|[𝜓]) > 0.9. For every 𝑉 ↘ ℕ and 𝑅 < 2, let U𝑉 ,𝑅 = {𝑂 :
ϑ𝜓·𝑂

𝑇
(𝑉)⇓= 𝑅}. Consider the following set

𝑊 = {(𝑉 , 𝑅) ↘ ℕ ↖ 2 : 𝜘(U𝑉 ,𝑅) > 0.2}

Note that the classes U𝑉 ,𝑅 are uniformly ϖ0
1, so the set 𝑊 is ϖ0

1. There are
three cases:

⊋ Case 1: (𝑉 ,ϑ𝑉(𝑉)) ↘ 𝑊 for some 𝑉 ↘ ℕ such that ϑ𝑉(𝑉)⇓. By assump-
tion, 𝜘(U

𝑉 ,ϑ𝑉 (𝑉)) > 0.2. Let C∋ U
𝑉 ,ϑ𝑉 (𝑉) be a clopen22 subclass such

that 𝜘(C) > 0.2. Let Q𝜓 = {𝑂 ↘ 2ℕ : 𝜓 · 𝑂 ↘ Q}. By choice of 𝜓,
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23: A tree is pruned it it has no leaves, in
other words if every node is extendible.

24: One usually writes !𝑖𝑎" for the clopen
class generated by 𝑖𝑎 . Indeed, using [𝑖𝑎]
would be confusing with the collection of
paths through a tree.

𝜘(Q𝜓) > 0.9, so𝜘(Q𝜓△C) > 0.1. Finally, let R = {𝜓·𝑂 : 𝑂 ↘ Q𝜓△C}.
The class R is a closed subclass of Q such that 𝜘(R|[𝜓]) > 0.1, thus
R is a valid extension. Furthermore, R forces ϑ𝑈

𝑇
(𝑉)⇓= ϑ𝑉(𝑉).

⊋ Case 2: (𝑉 , 0), (𝑉 , 1) ϱ 𝑊 for some 𝑉 ↘ ℕ. By assumption, 𝜘(Q𝑉 ,0) ↓
0.2 and 𝜘(Q𝑉 ,1) ↓ 0.2, so 𝜘(Q𝑉 ,0 ▽ Q𝑉 ,1) ↓ 0.4. Let R = {𝜓 · 𝑂 ↘ Q :
𝑂 ϱ Q𝑉 ,0 ▽ Q𝑉 ,1}. Since 𝜘(Q|[𝜓]) > 0.9, then 𝜘(R|[𝜓]) > 0.5). So R

is a valid extension of Q forcing ¬(ϑ𝑈

𝑇
(𝑉)⇓= 0)∞¬(ϑ𝑈

𝑇
(𝑉)⇓= 1), hence

forcing ϑ𝑈

𝑇
not to be a DNC2 function.

⊋ Case 3: None of Case 1 and Case 2 holds. Then 𝑊 is a ϖ0
1 graph of a

{0, 1}-valued DNC function. This contradicts the fact that 0 is not PA.

We are now ready to prove Theorem 5.5.7. Given 𝑇 ↘ ℕ, let D𝑇 be the set
of all conditions 𝑍 ↘ ℙ forcing ϑ𝑈

𝑇
not to be a DNC2 function. It follows from

Lemma 5.5.8 that every D𝑇 is dense, hence every su"ciently generic filter F
is {D𝑇 : 𝑇 ↘ ℕ}-generic, so 𝑈F is not of PA degree. This completes the proof
of Theorem 5.5.7.

Exercise 5.5.9. Consider the notion of forcing of Theorem 5.5.7. Given a
condition P ∋ 2ℕ , a string 𝜓 ↘ 2<ℕ such that 𝜘(Q|[𝜓]) > 0.9, and a ϖ0

1
formula 𝜕(𝑈), let P?′𝜕(𝑈) i! 𝜘{𝑂 : 𝜕(𝜓 · 𝑂)} > 0.2.

1. Show that C?′𝜕(𝑈) is a ϖ0
1-preserving, ω0

1-merging forcing question.
2. Deduce that if 𝑟 is a non-computable set and P ∋ 2ℕ is a closed class

of positive measure, there is a member 𝑈 ↘ P such that 𝑟 ⫌𝑁 𝑈. 𝜒

5.6 Avoiding closed classes

The notion of PA avoidance is an avoidance of a particular closed class:
the ω0

1 class P ∋ 2ℕ of DNC2 functions. This class has two particularities:
First, it is e!ectively closed, hence can be represented by a computable tree.
Second, it is homogeneous, that is, if one considers the pruned23 tree𝑁 ∋ 2<ℕ
corresponding to P, for every 𝜓, 𝜔 ↘ 𝑁 at the same level, the sub-trees below
𝜓 and 𝜔 coincide.

In this section, we generalize PA avoidance to avoid a larger collection of
closed classes, with no e!ectiveness or homogeneity constraint. Many natural
closed classes in 2ℕ with no computable member cannot even be computably
approximated by giving arbitrarily large initial segments of members.

Given a closed class C ∋ 2ℕ , a trace is a collection of finite coded sets of
strings 𝑖0 , 𝑖1 , . . . such that for each 𝑎 ↘ ℕ, 𝑖𝑎 contains only strings of length
exactly 𝑎, and C△⋃

𝜓↘𝑖𝑎 [𝜓] ε ↑.24 In other words, for every 𝑎 ↘ ℕ, there is
a string 𝜓 ↘ 𝑖𝑎 and some 𝑄 ↘ C such that 𝜓 ℑ 𝑄. A 𝑏-trace is a trace such
that card 𝑖𝑎 = 𝑏 for every 𝑎 ↘ ℕ. A constant-bound trace (c.b-trace) of C is
a 𝑏-trace for some 𝑏 ↘ ℕ.

Definition 5.6.1. A problem P admits constant-bound trace avoidance25 25: We defined the notion of closed classes
in Cantor space 2ℕ , but all the theorems
work equally for e!ectively compact classes
in Baire space ℕℕ . More precisely, it works
for every closed class C ∋ 𝑔

ℕ for some
total computable function 𝑔 : ℕ ≃ ℕ.

if for every set 𝐿 and every closed class C ∋ 2ℕ with no 𝐿-computable
c.b-trace, every 𝐿-computable instance 𝑂 of P admits a solution 𝑃 such that
C has no 𝐿 ↔ 𝑃-computable c.b-trace. ↗
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27: The proof actually shows that if U is a
c.e. set of blocks with no C-correct block
and if there is no 𝑏-disperse sequence of
blocks outside of 𝑊 , then there is a com-
putable 𝑏-trace of C.

Before proving that some problems admit constant-bound trace avoidance,
we shall start with a few exercises to get familiar with this seemingly artificial
notion. The two following exercises show that for a homogeneous ω0

1 class,
every constant-bound trace computes a member. Hence, c.b-trace avoidance
generalizes PA avoidance.

Exercise 5.6.2. Let C ∋ 2ℕ be a ω0
1 class. Show that every 𝑏-trace of C

computes a 1-trace of C. 𝜒

Exercise 5.6.3. Let C ∋ 2ℕ be a homogeneous closed class. Show that
every 1-trace of C computes a member of C. 𝜒

The following exercise shows that c.b-trace avoidance generalizes cone avoid-
ance.

Exercise 5.6.4. Let 𝑟 be a non-computable set. Show that {𝑟} does not
admit any computable c.b-trace. 𝜒

As usual, the core lemma involved in proofs of constant-bound trace avoidance
is based on a 3-case analysis. As in PA avoidance for weakly merging forcing
questions, the case analysis for preservation of c.b-traces is non-trivial and
based on a combinatorial lemma. Let us introduce some piece of terminology
which will be helpful in working with constant-bound traces.

A block is a finite set of strings all of which have the same length. We write B𝑎

for the set of all blocks 𝑖 ∋ 2𝑎 and B=
⋃

𝑎
B𝑎 . Given a closed class C∋ 2ℕ ,

a block 𝑖 ↘ B𝑎 is C-correct if 𝑖 = {𝜘 ↘ 2𝑎 : C△ [𝜘] ε ↑}. In other words,
𝑖 is C-correct if it is some level in the pruned tree representing C. Given
𝑎 , 𝑏 ↘ ℕ, a finite collection of blocks 𝑦 ∋ B𝑎 is 𝑏-disperse if for every 𝑏-
partition (𝑄𝑝 : 𝑝 < 𝑏) of 𝑦 , there is some 𝑝 < 𝑏 such that

⋂
𝑖↘𝑄𝑝

𝑖 = ↑. The
following exercise emphasises a core property of 𝑏-disperse sequences:

Exercise 5.6.5. Fix 𝑎 , 𝑏 ↘ ℕ, and let 𝑦 ∋ B𝑎 be a 𝑏-disperse sequence. If
𝑧 ↘ B𝑎 is a block which intersects2626: By intersects, we mean that 𝑖 △ 𝑧 ε ↑

for every 𝑖 ↘ 𝑦 .
every element of 𝑦 , then card𝑧 > 𝑏.𝜒

We now prove the core combinatorial lemma which frames the 3-case analy-
sis.

Lemma 5.6.6 (Liu [32]). Let C∋ 2ℕ be a closed class with no computable
c.b-trace. Let 𝑊 ∋ B be a c.e. set of blocks. Either 𝑊 contains a C-correct
block, or for every 𝑏 ↘ ℕ, there is some 𝑎 ↘ ℕ such that the set B𝑎 \𝑊 is
𝑏-disperse. 𝜒

P!""#. Suppose that 𝑊 does not contain any C-correct block.27 For every
𝑎 ↘ ℕ, let 𝑦𝑎 = B𝑎 \𝑊 . Fix some 𝑏 ↘ ℕ. Suppose that for every 𝑎 ↘ ℕ, 𝑦𝑎

is not 𝑏-disperse, otherwise we are done. Since 𝑦𝑎 is co-c.e. uniformly in 𝑎,
there exists a co-c.e. enumeration (𝑦𝑎 ,𝑞)𝑞↘ℕ of 𝑦𝑎 . Since 𝑦𝑎 is not 𝑏-disperse,
there exists some 𝑞 ↘ ℕ and a 𝑏-partition (𝑄𝑎 ,𝑝 : 𝑝 < 𝑏) of 𝑦𝑎 ,𝑞 such that
for each 𝑝 < 𝑏,

⋂
𝑖↘𝑄𝑎 ,𝑝

𝑖 ε ↑. Such 𝑏-partition can be computed uniformly
in 𝑎. Moreover, since 𝑦𝑎 contains a C-correct block, then there is some 𝑝 < 𝑏

such that 𝑄𝑎 ,𝑝 contains a C-correct block, hence for every 𝜓 ↘ ⋂
𝑖↘𝑄𝑎 ,𝑝

𝑖,
C△ [𝜓] ε ↑. For each 𝑎, let 𝑧𝑎 be obtain by picking a string in each set⋂

𝑖↘𝑄𝑎 ,𝑝
𝑖 for each 𝑝 < 𝑏. The sequence (𝑧𝑎)𝑎↘ℕ is a computable 𝑏-trace

of C, contradicting the hypothesis.
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Let us illustrate preservation of constant-bound traces using the simplest notion
of forcing, namely, Cohen forcing.

Theorem 5.6.7
Let C ∋ 2ℕ be a closed class with no computable c.b-trace. For every
su!ciently Cohen generic set 𝑈, C admits no 𝑈-computable c.b-trace.

P!""#. It su"ces to prove the following lemma.

Lemma 5.6.8. For every condition 𝜓 ↘ 2<ℕ , every Turing index 𝑇 ↘ ℕ and
every 𝑏 ↘ ℕ, there is an extension 𝜔 ⇔ 𝜓 forcing ϑ𝑈

𝑇
not to be a 𝑏-trace of C.𝜒

P!""#. We can assume without loss of generality that ϑ𝑇 is a 𝑏-trace func-
tional, that is, whenever ϑ𝑂

𝑇
(𝑎)⇓, then the output is a block of size 𝑏, whose

strings have length 𝑎. Fix a condition 𝜓. Consider the following set:

𝑊 = {𝑖 ↘ B𝑎 : 𝑎 ↘ ℕ, ⇐𝜔 ⇔ 𝜓 ϑ𝜔
𝑇
(𝑎)⇓ △𝑖 = ↑}

Note that the set 𝑊 is ϖ0
1. There are three cases:

⊋ Case 1: there is some 𝑎 ↘ ℕ such that 𝑊 △ B𝑎 contains some C-
correct block 𝑖. Let 𝜔 ⇔ 𝜓 witness 𝑖 ↘ 𝑊 , that is, let 𝜔 ⇔ 𝜓 be such
that ϑ𝜔

𝑇
(𝑎)⇓ △𝑖 = ↑. Then 𝜔 forces ϑ𝑈

𝑇
not to be a 𝑏-trace of C.

⊋ Case 2: there is some 𝑎 ↘ ℕ such that B𝑎 \𝑊 is 𝑏-disperse. We claim
that for every 𝑖 ↘ B𝑎 \𝑊 , 𝜓 forces ϑ𝑈

𝑇
(𝑎)⇒ ⇑ϑ𝑈

𝑇
(𝑎)⇓ △𝑖 ε ↑. Indeed,

if for some 𝐿 ↘ [𝜓], ϑ𝐿

𝑇
(𝑎)⇓ △𝑖 = ↑, then by the use property, there

is some 𝜔 ↙ 𝐿 such that ϑ𝜔
𝑇
(𝑉)⇓ △𝑖 = ↑, contradicting the fact that

𝑖 ↘ B𝑎 \𝑊 . Thus 𝜓 forces

ϑ𝑈

𝑇
(𝑎)⇒ ⇑ (̸𝑖 ↘ B𝑎 \𝑊) ϑ𝑈

𝑇
(𝑎)⇓ △𝑖 ε ↑

Since ϑ𝑇 is a 𝑏-trace functional, and B𝑎 \ 𝑊 is 𝑏-disperse, then by
Exercise 5.6.5, 𝜓 forces ϑ𝑈

𝑇
(𝑎)⇒.

⊋ Case 3: None of Case 1 and Case 2 holds. This cannot happen by
Lemma 5.6.6.

We are now ready to prove Theorem 5.6.7. Given 𝑇 , 𝑏 ↘ ℕ, let D𝑇 ,𝑏 be the
set of all conditions 𝜔 forcing ϑ𝑈

𝑇
not to be a 𝑏-trace of C. It follows from

Lemma 5.6.8 that every D𝑇 ,𝑏 is dense, hence for every {D𝑇 ,𝑏 : 𝑇 , 𝑏 ↘ ℕ}-
generic set 𝑈, C admits no 𝑈-computable c.b-trace.

Looking more closely at the previous proof, the key feature of the forcing we
exploited was the existence of a ϖ0

1-preserving forcing question such that, if it
does not hold for a finite number of ϖ0

1 formulas, then there exists an extension
forcing all negations simultaneously. This motivates the following definition,
which is a strong form of ς-merging.

Definition 5.6.9. Given a notion of forcing (ℙ,↓) and a family of formu-
las ς, a forcing question is finitely ς-merging if for every 𝑌 ↘ ℙ and every
finite sequence of ς-formulas 𝜕0(𝑈), . . . , 𝜕𝑛∈1(𝑈), if 𝑌 ?′𝜕𝑝(𝑈) holds for
every 𝑝 < 𝑛 , then there is an extension 𝑍 ↓ 𝑌 forcing

∧
𝑝<𝑛 𝜕𝑝(𝑈). ↗

As for ς-merging forcing questions, we say that a forcing question for ϖ0
𝑎

formulas is finitely ω0
𝑎
-merging if negation of the forcing question is finitely

ω0
𝑎
-merging. At this point, it should be clear how to prove the abstract theorem

for constant-bound trace avoidance. We leave it as an exercise:
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Exercise 5.6.10. Let C∋ 2ℕ be a closed class with no computable constant-
bound trace. Let (ℙ,↓) be a notion of forcing with a ϖ0

1-preserving, finitely
ω0

1-merging forcing question. Prove that for every su"ciently generic filter F,
C admits no 𝑈F-computable constant-bound trace. 𝜒

Exercise 5.6.11. Let C∋ 2ℕ be a closed class with no computable constant-
bound trace. Adapt the proof of Theorem 3.2.4 to show that for any set 𝑋,
there exists a set 𝑈 such that 𝑈→ ∝𝑁 𝑋 and C admits no 𝑈-computable
constant-bound trace. 𝜒

Exercise 5.6.12. Let C∋ 2ℕ be a closed class with no computable constant-
bound trace. Use computable Mathias forcing to prove that for every uniformly
computable sequence of sets ↦𝑠 = 𝑠0 , 𝑠1 , . . . , there is an infinite ↦𝑠-cohesive
set 𝑈 such that C admits no 𝑈-computable constant-bound trace. 𝜒

Recall that some disjunctive or tree-like forcing questions are not even ω0
1-

merging. One can generalize Exercise 5.6.10 to such notions as we did in
Section 5.2.

Definition 5.6.13. Given a notion of forcing (ℙ,↓) and a family of formulas ς,
a forcing question is weakly finitely ς-merging if for every 𝑌 ↘ ℙ, there is a
J ↘ ℕ such that for every finite sequence of ς-formulas 𝜕0(𝑈), . . . , 𝜕𝑛∈1(𝑈),
if 𝑌 ?′𝜕𝑝(𝑈) holds for every 𝑝 < 𝑛 , there is a J-partition (𝑄𝑞 : 𝑞 < J) of
{0, . . . , 𝑛 ∈ 1} such that for every 𝑞 < J, there is an extension 𝑍 ↓ 𝑌 forcing∧

𝑝↘𝑄𝑞
𝜕𝑝(𝑈). ↗

The previous definition is quite technical, but contains exactly the hypothesis
necessary to prove the following abstract theorem.

Theorem 5.6.14
Let C∋ 2ℕ be a closed class with no computable c.b-trace. Let (ℙ,↓) be
a notion of forcing with a ϖ0

1-preserving weakly finitely ω0
1-merging forcing

question. For every su!ciently generic filter F, Cadmits no 𝑈F-computable
c.b-trace.

P!""#. It su"ces to prove the following diagonalization lemma.

Lemma 5.6.15. For every condition 𝑌 ↘ ℙ, every Turing index 𝑇 ↘ ℕ and
every 𝑏 ↘ ℕ, there is an extension 𝑍 ↓ 𝑌 forcing ϑ𝑈

𝑇
not to be a 𝑏-trace of C.𝜒

P!""#. Let J ↘ ℕ witness that the forcing question is weakly finitely ω0
1-

merging for 𝑌. Consider the following set

𝑊 = {𝑖 ↘ B𝑎 : 𝑎 ↘ ℕ, 𝑌 ?′ϑ𝑈

𝑇
(𝑎)⇓ △𝑖 = ↑}

Since the forcing question is ϖ0
1-preserving, the set 𝑊 is ϖ0

1. There are three
cases:

⊋ Case 1: there is some 𝑎 ↘ ℕ such that U△ B𝑎 contains some C-
correct block 𝑖. By Property (1) of the forcing question, there is an
extension 𝑍 ↓ 𝑌 forcing ϑ𝑈

𝑇
(𝑎) △ 𝑖 = ↑. In particular, 𝑍 forces ϑ𝑈

𝑇
not

to be a 𝑏-trace of C.
⊋ Case 2: there is some 𝑎 ↘ ℕ such that B𝑎 \ U is 𝑏 · J-disperse. Since

the forcing question is weakly finitely ω0
1-merging with witness J, there
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28: For any J-partition of a 𝑏 · J-disperse
family, one of the parts is 𝑏-disperse. In-
deed, otherwise, for each part 𝑞 < J, there
is a 𝑏-partition witnessing the failure. Putting
all these 𝑏-partitions together, we obtain a
failure of 𝑏 · J-dispersity of the family.

is a J-partition (𝑄𝑞 : 𝑞 < J) of B𝑎 \ U such that for every 𝑞 < J, there
is an extension 𝑍𝑞 ↓ 𝑌 forcing

∧
𝑖↘𝑄𝑞

(
ϑ𝑈

𝑇
(𝑎)⇒ ⇑ϑ𝑈

𝑇
(𝑎) △ 𝑖 ε ↑)

Let 𝑞 < J be such that 𝑄𝑞 is 𝑏-disperse.28 Since ϑ𝑇 is a 𝑏-trace func-
tional, by Exercise 5.6.5, the extension 𝑍𝑞 ↓ 𝑌 forces ϑ𝑈

𝑇
(𝑎)⇒.

⊋ Case 3: None of Case 1 and Case 2 holds. This case cannot happen by
Lemma 5.6.6.

We are now ready to prove Theorem 5.6.14. Given 𝑇 , 𝑏 ↘ ℕ, let D𝑇 ,𝑏 be the
set of all conditions 𝑍 ↘ ℙ forcing ϑ𝑈

𝑇
not to be a 𝑏-trace of C. It follows from

Lemma 5.2.5 that every D𝑇 ,𝑏 is dense, hence every su"ciently generic filter F
is {D𝑇 ,𝑏 : 𝑇 , 𝑏 ↘ ℕ}-generic, so Cadmits no 𝑈F-computable c.b-trace. This
completes the proof of Theorem 5.6.14.

Liu [32] proved that Ramsey’s theorem for pairs admits constant-bound trace
avoidance, following the same structure as his proof of PA avoidance, mutatis
mutandis. We leave the steps as exercises.

Exercise 5.6.16 (Liu [32]). Let C∋ 2ℕ be a closed class with no computable
constant-bound trace. Adapt the proof of Theorem 5.3.3 to show that for any
non-empty ω0

1 class P ∋ 2ℕ , there exists an infinite set 𝑙 homogeneous
for P such that C admits no 𝑙-computable constant-bound trace. 𝜒

Exercise 5.6.17 (Liu [32]). Let C∋ 2ℕ be a closed class with no computable
constant-bound trace. Adapt the proof of Theorem 5.4.3 using Exercise 5.6.16
to show that for any set 𝑋, there exists an infinite subset 𝑙 of 𝑋 or 𝑋 such
that C admits no 𝑙-computable constant-bound trace. 𝜒

Exercise 5.6.18 (Liu [32]). Let C∋ 2ℕ be a closed class with no computable
constant-bound trace. Combine Exercise 5.6.12 and Exercise 5.6.17 to show
that for any computable coloring 𝑆 : [ℕ]2 ≃ 2, there exists an infinite 𝑆 -
homogeneous set 𝑙 ∋ ℕ such that C admits no 𝑙-computable constant-
bound trace. 𝜒

The notion of constant-bound trace avoidance is the right invariant property
strongly preserved by the pigeonhole principle to prevent it from computing
a 1-trace of a closed class C ∋ 2ℕ . Indeed, if C admits a computable 𝑏-
trace 𝑖0 , 𝑖1 , . . . for some 𝑏 ↘ ℕ, one application of the pigeonhole principle
for 𝑏 colors yields an infinite 1-trace of C. This however leaves open the case
of closed classes with no computable member, but admitting a computable
1-trace.

Question 5.6.19. Is there a natural characterization of the closed classes
strongly avoided by the pigeonhole principle? 𝜒

5.7 DNC and compactness

Recall that a function 𝑆 : ℕ ≃ ℕ is diagonally non-computable (DNC) if
̸𝑇 𝑆 (𝑇) ε ϑ𝑇(𝑇). PA degrees are those computing a {0, 1}-valued DNC
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29: The idea is the following: Given a list
𝑚0 , . . . , 𝑚𝑓∈1 of 𝑓 integers, interpret each
integer as a 𝑓-tuple of integers, based on a
computable bijection.

𝑚0 𝑚
0
0 𝑚

1
0 . . . 𝑚

𝑓∈1
0

𝑚1 𝑚
0
1 𝑚

1
1 . . . 𝑚

𝑓∈1
1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

𝑚
𝑓∈1 𝑚

0
𝑓∈1 𝑚

1
𝑓∈1 . . . 𝑚

𝑓∈1
𝑓∈1

Then, given 𝑓-many 𝑓-tuples of elements,
by a diagonal argument, one can create a
𝑓-tuple of integers which is di!erent from
each element of this list, and re-interpret it
as an integer.
The di"culty comes from the fact that the
list 𝑚0 , . . . , 𝑚𝑓∈1 is c.e., so one uses a DNC
function to create this diagonal 𝑓-tuple.

30: If C ∋ 2ℕ is a closed class with
𝜘(C) ∝ 2∈𝑥 for some 𝑥 ∝ 3, then

card{𝑎 ↘ ℕ : 𝜘(C△ Q𝑎) < 2∈2𝑥} < 2𝑥.

Indeed, let 𝑖 be a subset of it of size 2𝑥 and
let R𝑖 = {𝑂 ↘ 2ℕ : 𝑖 △𝑂 = ↑}. Note that

2ℕ = R𝑖 ▽
⋃
𝑎↘𝑖

Q𝑎

We have 𝜘(C△ R𝑖) ↓ 2∈2𝑥 , and 𝜘(C△⋃
𝑎↘𝑖 Q𝑎) < 2𝑥 · 2∈2𝑥 , so

2∈𝑥 ↓ 𝜘(C) ↓ 2∈2𝑥 + 2𝑥 · 2∈2𝑥

which yields a contradiction when 𝑥 ∝ 3.

function. In this section, we consider the computational power of ℕ-valued
DNC functions. We shall see that the existence of DNC functions is equivalent
to a Ramsey-type form of compactness, called the Ramsey-type weak weak
König’s lemma. A Turing degree is DNC if it computes a DNC function. It is
often useful to think of DNC degrees as those computing a function which can
escape finite c.e. sets when a bound to their size is known.

Proposition 5.7.1 (Bienvenu, Patey and Shafer [37]). Let 𝑂 be a set. The
following are equivalent:

1. 𝑂 computes a DNC function ;
2. 𝑂 computes a function K : ℕ2 ≃ ℕ such that for every 𝑇 , 𝑓 ↘ ℕ, if

card𝑤𝑇 ↓ 𝑓, then K(𝑇 , 𝑓) ϱ 𝑤𝑇 . 𝜒

P!""#. (1) ≃ (2)29: Let 𝑆 : ℕ ≃ ℕ be a DNC function. For every 𝑇 , 𝑓 ↘ ℕ

and 𝑐 < 𝑓, let 𝑔(𝑇 , 𝑓 , 𝑐) be the index of the partial computable function
ϑ

𝑔(𝑇 ,𝑓 ,𝑐) which on any input 𝑉, waits for the 𝑐th element 𝑚𝑐 of 𝑤𝑇 to appear,
in order of apparition. It card𝑤𝑇 ↓ 𝑐, then the program will never termi-
nate, and ϑ

𝑔(𝑇 ,𝑓 ,𝑐) will be the nowhere-defined function. If card𝑤𝑇 > 𝑐, then
𝑚𝑐 is eventually found. Then, interpret 𝑚𝑐 as a 𝑓-tuple ∀𝑚0

𝑐
, . . . , 𝑚

𝑓∈1
𝑐

∃ and
output 𝑚𝑐

𝑐
. In this case, ϑ

𝑔(𝑇 ,𝑓 ,𝑐)(𝑔(𝑇 , 𝑓 , 𝑐)) ⇓= 𝑚
𝑐

𝑐
, and 𝑆 (𝑔(𝑇 , 𝑓 , 𝑐)) ε 𝑚

𝑐

𝑐
.

Let K(𝑇 , 𝑓) = ∀ 𝑆 (𝑔(𝑇 , 𝑓 , 0)), . . . 𝑆 (𝑔(𝑇 , 𝑓 , 𝑓 ∈ 1))∃. Suppose for the contra-
diction that card𝑤𝑇 ↓ 𝑓 and K(𝑇 , 𝑓) ↘ 𝑤𝑇 . Say K(𝑇 , 𝑓) = 𝑚𝑐 ↘ 𝑤𝑇 . Then
𝑆 (𝑔(𝑇 , 𝑓 , 𝑐)) = 𝑚

𝑐

𝑐
= ϑ

𝑔(𝑇 ,𝑓 ,𝑐)(𝑔(𝑇 , 𝑓 , 𝑐)), contradicting the fact that 𝑆 is a DNC
function.

(2) ≃ (1): Let K : ℕ2 ≃ ℕ be such that for every 𝑇 , 𝑓 ↘ ℕ, if card𝑤𝑇 < 𝑓,
then K(𝑇 , 𝑓) ϱ 𝑤𝑇 . For every 𝑇 ↘ ℕ, let 𝑔(𝑇) be an index of the partial
computable function ϑ

𝑔(𝑇) which, on input 𝑉, waits until ϑ𝑇(𝑇)⇓. If 𝑉 = ϑ𝑇(𝑇)⇓,
then the program halts, otherwise it loops forever. In other words, 𝑤

𝑔(𝑇) =
{ϑ𝑇(𝑇)} if ϑ𝑇(𝑇)⇓, and 𝑤

𝑔(𝑇) = ↑ otherwise. The function 𝑆 : ℕ ≃ ℕ defined
by 𝑆 (𝑇) = K(𝑔(𝑇), 1) is diagonally non-computable.

DNC degrees can be expressed as a form of compactness as follows: The
Ramsey-type weak weak König lemma (RWWKL) is the problem whose in-
stances are binary trees of positive measure, and whose solutions are infinite
homogeneous sets for the tree. It is a problem at the intersection between weak
weak König’s lemma – corresponding to the existence of random sequences –
and the Ramsey-type König’s lemma, – the compactness part of Ramsey’s
theorem for pairs.

Proposition 5.7.2. Let 𝑂 be a set. The following are equivalent:

1. 𝑂 computes a DNC function;
2. Every ω0

1 class P ∋ 2ℕ of positive measure admits an infinite 𝑂-
computable homogeneous set. 𝜒

P!""#. (1) ≃ (2): Fix a ω0
1 class P ∋ 2ℕ with 𝜘(P) ∝ 2∈𝑥 for some 𝑥 ∝ 3.

Given a set 𝑙 ∋ ℕ, let Q𝑙 = {𝑂 ↘ 2ℕ : 𝑙 ∋ 𝑂}, and let Q𝑎 = Q{𝑎} . A finite
set 𝑖 ∋ ℕ is valid if 𝜘(P△ Q𝑖) ∝ 2∈𝑥·2card 𝑖 . Note that ↑ is valid, and that if 𝑖
is valid, then it is homogeneous for P. For every finite set 𝑖 ∋ ℕ, let 𝑤

𝑔(𝑖) be
the c.e. set of all 𝑎 ↘ ℕ such that 𝑖 ▽ {𝑎} is not valid. Let K : ℕ2 ≃ ℕ be the
function given by Proposition 5.7.1. By a measure-theoretic argument30, for
any valid set 𝑖, card𝑤

𝑔(𝑖) < 2 · 𝑥 · 2card 𝑖 , so K(𝑔(𝑖), 2 · 𝑥 · 2card 𝑖) ϱ 𝑤
𝑔(𝑖).

We can define an infinite set 𝑙 ∋ ℕ such that every initial segment is valid. In
particular, 𝑙 is homogeneous for P.
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(2) ≃ (1): For every 𝑇 ↘ ℕ, let P𝑇 be the ω0
1 class of all elements 𝑂 such

that if ϑ𝑇(𝑇)⇓, then interpreting the output as a (𝑇 + 3)-tuple ∀𝑉0
𝑇
, . . . , 𝑉

𝑇+2
𝑇

∃,
there is some 𝑝 < 𝑞 < 𝑇 + 3 such that 𝑂(𝑉𝑝

𝑇
) ε 𝑂(𝑉𝑞

𝑇
). Let P =

⋂
𝑇
P𝑇 . First,

notice that for every infinite homogeneous set 𝑙 = {𝑚0 < 𝑚1 < . . . } for P,
the 𝑙-computable function defined by 𝑆 (𝑇) = ∀𝑚0 , . . . , 𝑚𝑇+1∃ is diagonally
non-computable. Second, for every 𝑇, 𝜘(2ℕ \ P𝑇) ↓ 2 · 2∈𝑇∈3 = 2∈𝑇∈2, so
𝜘(P) ∝ 1 ∈∑

𝑇
2∈𝑇∈2 = 1/2. Thus, P has positive measure.

The Ramsey-type weak weak König lemma is a particular case of RWKL,
hence follows from Ramsey’s theorem for pairs. Thus, the existence of DNC
functions does not imply the existence of random sequences, and a fortiori of
PA degrees.

5.8 DNC avoidance

We now develop the techniques to prove that a problem does not imply the
existence of this weak notion of compactness. The framework of closed classes
avoidance of Section 5.6 admits a straightforward generalization to e!ectively
compacts in the Baire space ℕℕ . The class of ℕ-valued DNC functions is ω0

1
in the Baire space, but not compact, thus it does not fall within the scope of
this framework.

Definition 5.8.1. A problem P admits DNC avoidance31 31: Note the similarity between PA and
DNC avoidance.

if for every pair of
sets 𝐿 and 𝑀 ↓𝑁 𝐿 such that 𝐿 is not of DNC degree over 𝑀, every 𝐿-
computable instance 𝑂 of P admits a solution 𝑃 such that 𝑃 ↔ 𝐿 is not of
DNC degree over 𝑀. ↗

Due to the similar nature of {0, 1}-valued and ℕ-valued DNC functions, proofs
of DNC avoidance are very similar to those of PA avoidance.

Exercise 5.8.2. Adapt the proof of Theorem 5.1.3 to show that for every su"-
ciently Cohen generic set 𝑈, 𝑈 is not of DNC degree. 𝜒

In the proof of PA avoidance, the ω0
1-merging property of the forcing question

is used in the second case, for forcing partiality. Since the functionals are
{0, 1}-valued, it su"ces to merge two ω0

1 properties simultaneously to force
partiality. In the case of ℕ-valued functionals, infinitely many ω0

1 properties
need to be forced simultaneously.

Definition 5.8.3. Given a notion of forcing (ℙ,↓) and a family of formulas ς,
a forcing question is countably ς-merging if for every 𝑌 ↘ ℙ and every
countable sequence of ς-formulas (𝜕𝑝(𝑈))𝑝↘ℕ , if 𝑌 ?′𝜕𝑝(𝑈) for each 𝑝 ↘ ℕ,
then there is an extension 𝑍 ↓ 𝑌 forcing ̸𝑝𝜕𝑝(𝑈). ↗

Being countably ω0
1-merging is a very strong properties, satisfied by very few

notions of forcing in practice. Indeed, DNC degrees being computationally very
weak, many natural problems imply their existence.

Theorem 5.8.4
Let (ℙ,↓) be a notion of forcing with aϖ0

1-preserving, countablyω0
1-merging

forcing question. For every su!ciently generic filter F, 𝑈F is not of DNC
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32: Note that contrary to PA avoidance, this
set ranges over ℕ↖ℕ instead of ℕ↖2. This
di!erence is important in Case 2, where one
needs to force countably many ω0

1 formulas
simultaneously.

33: One can modify the construction to en-
code any set 𝐿 instead of ↑→. The con-
struction is then 𝑋 ↔ 𝐿 ↔ ↑→-computable.
This generalization is due to Jockusch and
Shore [39].

degree.

P!""#. It su"ces to prove the following lemma:

Lemma 5.8.5. For every condition 𝑌 ↘ ℙ and every Turing index 𝑇 ↘ ℕ, there
is an extension 𝑍 ↓ 𝑌 forcing ϑ𝑈

𝑇
not to be a DNC function. 𝜒

P!""#. Consider the following set32

𝑊 = {(𝑉 , 𝑅) ↘ ℕ2 : 𝑌 ?′ϑ𝑈

𝑇
(𝑉)⇓= 𝑅}

Since the forcing question is ϖ0
1-preserving, the set 𝑊 is ϖ0

1. There are three
cases:

⊋ Case 1: (𝑉 ,ϑ𝑉(𝑉)) ↘ 𝑊 for some 𝑉 ↘ ℕ such that ϑ𝑉(𝑉)⇓. By Property
(1) of the forcing question, there is an extension 𝑍 ↓ 𝑌 forcing ϑ𝑈

𝑇
(𝑉)⇓=

ϑ𝑉(𝑉).
⊋ Case 2: there is some 𝑉 ↘ ℕ such that for every 𝑚 ↘ ℕ, (𝑉 , 𝑚) ϱ

𝑊 . Since the forcing question is countably ω0
1-merging, there is an

extension 𝑍 ↓ 𝑌 forcing ̸𝑚¬(ϑ𝑈

𝑇
(𝑉)⇓= 𝑚), hence forcing ϑ𝑈

𝑇
not to be

a DNC function.
⊋ Case 3: None of Case 1 and Case 2 holds. Then 𝑊 is a ϖ0

1 graph of a
DNC function. This contradicts the fact that 0 is not DNC.

We are now ready to prove Theorem 5.8.4. Given 𝑇 ↘ ℕ, let D𝑇 be the set
of all conditions 𝑍 ↘ ℙ forcing ϑ𝑈

𝑇
not to be a DNC function. It follows from

Lemma 5.8.5 that every D𝑇 is dense, hence every su"ciently generic filter F
is {D𝑇 : 𝑇 ↘ ℕ}-generic, so 𝑈F is not of DNC degree. This completes the
proof of Theorem 5.8.4.

Exercise 5.8.6. Adapt the proof of Theorem 3.2.4 to show that for any set 𝑋,
there exists a set 𝑈 such that 𝑈→ ∝𝑁 𝑋 and 𝑈 is not of DNC degree. 𝜒

5.9 Comparing avoidances

We have seen in Sections 3.5 and 3.6 that cone avoidance coincides with
other preservation notions, such as preservation of 1 non-ϖ0

1 definition and
of 1 hyperimmunity. Cone avoidance does not imply PA avoidance, as WKL
satisfies the former, but not the latter. On the other hand, one can prove that
PA avoidance implies cone avoidance. For this, we need the following theorem,
which informally says that the computational distance between a set and its
Turing jump can be any non-zero Turing degree.

Theorem 5.9.1 (Posner and Robinson [38])
Let 𝑋 be a non-computable set. There exists a set 𝑈 such that 𝑋↔𝑈 ∝𝑁 𝑈

→.

P!""#. The idea is to build a 1-generic set 𝑈, which will encode ↑→33, so
that 𝑈 and 𝑋 allow to find the construction sequence. The construction itself
will be computable in 𝑋↔ ↑→. We can assume without loss of generality that 𝑋
is not a c.e. set (otherwise, one replaces 𝑋 by its complement). Let (𝑤𝑇)𝑇↘ℕ
be an enumeration of the ϖ0

1 subsets of 2<ℕ .
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Let 𝜓0 = 𝜙, the empty word. Suppose 𝜓𝑇 defined. Consider the set

𝑀𝑇 = {𝑗 : ⇐𝜔 such that 𝜓𝑇↑→(𝑇)0𝑗1𝜔 ↘ 𝑤𝑇}.

Note that 𝑀𝑇 is a c.e. set. In particular as 𝑋 is not c.e. there is some 𝑗 ↘ 𝑀𝑇

with 𝑗 ϱ 𝑋 or some 𝑗 ϱ 𝑀𝑇 with 𝑗 ↘ 𝑋. Consider the smallest 𝑗 such that
we are in one case or the other. Note that ↑→ ↔ 𝑋 allows to find uniformly this
integer 𝑗.

In the first case, let 𝜓𝑇+1 = 𝜓𝑇↑→(𝑇)0𝑗1𝜔 for the first string 𝜔 such that
𝜓𝑇↑→(𝑇)0𝑗1𝜔 is listed in 𝑤𝑇 . In the second case, let 𝜓𝑇+1 = 𝜓𝑇↑→(𝑇)0𝑗1.
Note that in this case no string of 𝑤𝑇 can extend 𝜓𝑇+1. We define 𝑈 as be-
ing 𝜓0 ↙ 𝜓1 ↙ 𝜓2 ↙ . . . . This completes the construction.

It is clear that 𝑈 is 1-generic and computable in 𝑋 ↔ ↑→. How do you now
compute ↑→ from 𝑈↔ 𝑋? Suppose we know the string 𝜓𝑇 . We then necessarily
know the 𝑇-th bit of ↑→: it is the bit 𝑐 such that 𝜓𝑇 𝑐 ℑ 𝑈. We can then find 𝜓𝑇+1
as follows: we look at the number 𝑗 of 0 which follows 𝜓𝑇 𝑐 in 𝑈. If 𝑗 ↘ 𝑋,
this means that 𝜓𝑇+1 = 𝜓𝑇 𝑐0𝑗1. If 𝑗 ϱ 𝑋, this means that 𝜓𝑇+1 = 𝜓𝑇 𝑐0𝑗1𝜔
for the first string 𝜔 found in 𝑤𝑇 . Finding this string 𝜔 is then a computable
process. We can therefore in all cases find 𝜓𝑇+1, and by repeating the process,
compute ↑→ from 𝑋 ↔ 𝑈. Thus, 𝑈 ↔ ↑→ ↓𝑁 𝑈 ↔ 𝑋. Since every 1-generic set
is generalized low, then 𝑈

→ ↓𝑁 𝑈 ↔ 𝑋.

Corollary 5.9.2
If a problem P admits PA avoidance, then it admits cone avoidance.

P!""#. Fix a set 𝐿, a non-𝐿-computable set 𝑟 and a P-instance 𝑂 ↓ 𝐿. By
Theorem 5.9.1 relativized to 𝐿, there is a set 𝑈 such that 𝑟 ↔ 𝐿 ↔ 𝑈 ∝𝑁

(𝐿 ↔ 𝑈)→. Since P admits PA avoidance, there is a solution 𝑃 to 𝑂 such that
𝑃 ↔ 𝐿 ↔ 𝑈 is not of PA degree over 𝐿 ↔ 𝑈. In particular, 𝑃 ↔ 𝐿 &𝑁 𝑟,
otherwise 𝑃 ↔ 𝐿 ↔ 𝑈 ∝𝑁 𝑟 ↔ 𝐿 ↔ 𝑈 ∝𝑁 (𝐿 ↔ 𝑈)→, but (𝐿 ↔ 𝑈)→ is of PA
degree over 𝐿 ↔ 𝑈.

Constant-bound trace avoidance generalizes PA avoidance, since the ω0
1 class

of {0, 1}-valued DNC functions does not admit any computable constant-bound
trace. On the other hand, some problems such as WWKL admit PA avoidance,
but not constant-bound trace avoidance. Indeed, there is a ω0

1 class of positive
measure with no computable constant-bound trance.

An infinite set 𝑂 ∋ ℕ is immune i! it has no computable infinite subset, or
equivalently no c.e. infinite subset. We have already seen a strong form of
immunity, namely, hyperimmunity, for which one cannot even approximate an
infinite subset by pairwise disjoint blocks of finite sets.

Definition 5.9.3. A problem P admits preservation of 1 immunity if for every
set 𝐿 and every 𝐿-immune set 𝑜, every 𝐿-computable instance 𝑂 of P admits
a solution 𝑃 such that 𝑜 is 𝐿 ↔ 𝑃-immune. ↗

As for DNC avoidance, the existence of aϖ0
1-preserving, countably ω0

1-merging
forcing question is su"cient to prove preservation of 1 immunity.

Theorem 5.9.4
Fix an infinite immune set 𝑜. Let (ℙ,↓) be a notion of forcing with a ϖ0

1-
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preserving, countably ω0
1-merging forcing question. For every su!ciently

generic filter F, 𝑜 is 𝑈F-immune.

P!""#. It su"ces to prove the following lemma:

Lemma 5.9.5. For every condition 𝑌 ↘ ℙ and every Turing index 𝑇 ↘ ℕ, there
is an extension 𝑍 ↓ 𝑌 forcing 𝑤

𝑈

𝑇
not to be an infinite subset of 𝑜. 𝜒

P!""#. Consider the following set

𝑊 = {𝑉 ↘ ℕ : 𝑌 ?′ 𝑉 ↘ 𝑤
𝑈

𝑇
}

Since the forcing question is ϖ0
1-preserving, the set 𝑊 is ϖ0

1. There are three
cases:

⊋ Case 1: 𝑉 ↘ 𝑊 \ 𝑜 for some 𝑉 ↘ ℕ. By Property (1) of the forcing
question, there is an extension 𝑍 ↓ 𝑌 forcing 𝑉 ↘ 𝑤

𝑈

𝑇
, hence forcing

𝑤
𝑈

𝑇
' 𝑜.

⊋ Case 2: 𝑊 is finite. Since the forcing question is countably ω0
1-merging,

there is an extension 𝑍 ↓ 𝑌 forcing ̸𝑉 ϱ 𝑊 𝑉 ϱ 𝑤
𝑈

𝑇
, hence forcing

𝑤
𝑈

𝑇
to be finite.

⊋ Case 3: 𝑊 is an infinite c.e. subset of 𝑜. This contradicts the immunity
of 𝑜.

We are now ready to prove Theorem 5.9.4. Given 𝑇 ↘ ℕ, let D𝑇 be the set
of all conditions 𝑍 ↘ ℙ forcing 𝑤

𝑈

𝑇
not to be an infinite subset of 𝑜. It follows

from Lemma 5.9.5 that every D𝑇 is dense, hence every su"ciently generic
filter F is {D𝑇 : 𝑇 ↘ ℕ}-generic, so 𝑜 is 𝑈F-immune. This completes the proof
of Theorem 5.9.4.

There exists some problems, such as the Ascending Descending sequence
principle (ADS) which admits DNC avoidance, but not preservation of 1 immu-
nity. This naturally raises the following question:

Question 5.9.6. Does preservation of 1 immunity imply DNC avoidance? 𝜒


